1 ;********************************************************
 
     2 ; histogram normalized by rain and compute correleration
 
     3 ;********************************************************
 
     4 load "$NCARG_ROOT/lib/ncarg/nclscripts/csm/gsn_code.ncl"
 
     5 load "$NCARG_ROOT/lib/ncarg/nclscripts/csm/gsn_csm.ncl"
 
     6 load "$NCARG_ROOT/lib/ncarg/nclscripts/csm/contributed.ncl"
 
     8 procedure pminmax(data:numeric,name:string)
 
    10   print ("min/max " + name + " = " + min(data) + "/" + max(data))
 
    11   if(isatt(data,"units")) then
 
    12     print (name + " units = " + data@units)
 
    24 ;************************************************
 
    25 ; read in data: observed
 
    26 ;************************************************
 
    27  diri1  = "/fis/cgd/cseg/people/jeff/clamp_data/lai/"
 
    28 ;fili1  = "land_class_T42.nc"
 
    29  fili1  = "land_class_T42_new.nc"
 
    30  fili2  = "LAI_2000-2005_mean_T42.nc"
 
    31  data_file_ob1 = addfile(diri1+fili1,"r")
 
    32  data_file_ob2 = addfile(diri1+fili2,"r")
 
    34  RAIN1 = tofloat(data_file_ob1->LAND_CLASS)               
 
    35  NPP1  = data_file_ob2->LAI      
 
    36 ;************************************************
 
    38 ;************************************************
 
    39  diri2  = "/fis/cgd/cseg/people/jeff/clamp_data/model/"
 
    40 ;fili3  = "i01.03cn_1545-1569_ANN_climo.nc"
 
    41  fili3  = "i01.04casa_1605-1629_ANN_climo.nc"
 
    42  data_file_model = addfile(diri2+fili3,"r")
 
    44  NPP2  = data_file_model->TLAI      
 
    45 ;************************************************
 
    46 ; print min/max and unit
 
    47 ;************************************************
 
    48   pminmax(RAIN1,"RAIN1")
 
    52   RAIN1_1D = ndtooned(RAIN1)
 
    53   NPP1_1D  = ndtooned(NPP1)
 
    54   NPP2_1D  = ndtooned(NPP2)
 
    56 ; Calculate some "nice" bins for binning the data in equally spaced
 
    60 ; nbins       = nclass + 1         ; Number of bins to use.
 
    61 ; nicevals    = nice_mnmxintvl(min(RAIN1_1D),max(RAIN1_1D),nbins,False)
 
    62 ; nvals       = floattoint((nicevals(1) - nicevals(0))/nicevals(2) + 1)
 
    63 ; range       = fspan(nicevals(0),nicevals(1),nvals)
 
    66   range       = fspan(0,nclassn-1,nclassn)
 
    74 ; Use this range information to grab all the values in a
 
    75 ; particular range, and then take an average.
 
    79   xvalues     = new((/2,nx/),typeof(RAIN1_1D))
 
    80   xvalues(0,:) = range(0:nr-2) + (range(1:)-range(0:nr-2))/2.
 
    81   dx           = xvalues(0,1) - xvalues(0,0)       ; range width
 
    82   dx4          = dx/4                              ; 1/4 of the range
 
    83   xvalues(1,:) = xvalues(0,:) - dx/5.
 
    84   yvalues      = new((/2,nx/),typeof(RAIN1_1D))
 
    85   mn_yvalues   = new((/2,nx/),typeof(RAIN1_1D))
 
    86   mx_yvalues   = new((/2,nx/),typeof(RAIN1_1D))
 
    90 ; See if we are doing model or observational data.
 
   100 ; Loop through each range and check for values.
 
   103       if (i.ne.(nr-2)) then
 
   105          print("In range ["+range(i)+","+range(i+1)+")")
 
   106         idx = ind((range(i).le.data).and.(data.lt.range(i+1)))
 
   109          print("In range ["+range(i)+",)")
 
   110         idx = ind(range(i).le.data)
 
   113 ; Calculate average, and get min and max.
 
   115       if(.not.any(ismissing(idx))) then
 
   116         yvalues(nd,i)    = avg(npp_data(idx))
 
   117         mn_yvalues(nd,i) = min(npp_data(idx))
 
   118         mx_yvalues(nd,i) = max(npp_data(idx))
 
   119         count = dimsizes(idx)
 
   122         yvalues(nd,i)    = yvalues@_FillValue
 
   123         mn_yvalues(nd,i) = yvalues@_FillValue
 
   124         mx_yvalues(nd,i) = yvalues@_FillValue
 
   127 ; Print out information.
 
   129        print(nd + ": " + count + " points, avg = " + yvalues(nd,i))
 
   130        print("Min/Max:  " + mn_yvalues(nd,i) + "/" + mx_yvalues(nd,i))
 
   133 ; Clean up for next time in loop.
 
   142 ; Start the graphics.
 
   150  good = ind(.not.ismissing(u) .and. .not.ismissing(v))
 
   160  bias = sum(abs(vv-uu)/(vv+uu))
 
   161  M    = (1.- (bias/nz))*5.