

Scalable Algorithms for Clustering Large Geospatiotemporal Data Sets on Intel Architectures

Collaborators:

Richard T. Mills, Argonne National Laboratory Sarat Sreepathi, Oak Ridge National Laboratory Forrest M. Hoffman, Oak Ridge National Laboratory Jitendra Kumar, Oak Ridge National Laboratory William W. Hargrove, USDA Forest Service Vamsi Sripathi Intel

Outline

Motivation

- Parallel k-means Clustering
- Intel Computing Architectures
- Baseline Performance
- Performance Optimizations
- Future Trends

Motivation

□ Rapid proliferation of data in Earth Sciences and other domains

- Advanced sensors high fidelity data
- Remote Sensing Platforms
- Observational Facilities
- Applications
 - Vegetation Mapping and Characterization
 - Development of Eco-regions
 - Species Distribution
- Critical need for High Performance Big Data Analytics

Parallel k-means Clustering

- Centralized Master-Worker paradigm
- Pick initial centroids
- Workers
 - Compute observation-to-centroid distances
 - Update centroids and cluster assignments
- Dataset
 - □ # of Observations = 1.5 million
 - □ # of Co-ordinates = 74
 - □ # of Clusters = 2000

Accelerated k-means: Triangle Inequality

- □ Implemented an accelerated version of the k-means process using two techniques described by Phillips (doi:10.1109/IGARSS.2002.1026202)
- Use triangle inequality principle to eliminate unnecessary point-to-centroid distance computations based on the previous cluster assignments and the new inter-centroid distances
- □ Reduce evaluation overhead by sorting inter-centroid distances so that new candidate centroids C_j are evaluated in order of their distance from the former centroid C_i . Once the critical distance $2 * d(p, C_i)$ is surpassed, no additional evaluations are needed, as the nearest centroid is known from a previous evaluation

 $\begin{array}{l} d(i,j) \leq d(p,i) + d(p,j) \\ d(i,j) - d(p,i) \leq d(p,j) \\ \text{if } d(i,j) \geq 2d(p,i) : \\ d(p,j) \geq d(p,i) \\ \text{without calculating the distance} \\ d(p,j) \end{array}$

Intel[®] Xeon[®] - Skylake

CHA – Caching and Home Agent ; SF – Snoop Filter; LLC – Last Level Cache; Core – Skylake-SP Core; UPI – Intel[®] UltraPath Interconnect

Features	Intel® Xeon® E5-2600 v4	Intel® Xeon® (Skylake-SP)	
Cores Per Socket	Up to 22	Up to 28	
Threads Per Socket	Up to 44 threads	Up to 56 threads	
Last-level Cache (LLC)	Up to 55 MB	Up to 38.5 MB (non-inclusive)	
QPI/UPI Speed (GT/s)	2x QPI channels @ 9.6 GT/s	Up to 3x UPI @ 10.4 GT/s	
PCIe* Lanes/ Controllers/Speed(GT/s)	40 / 10 / PCle* 3.0 (2.5, 5, 8 GT/s)	48 / 12 / PCIe 3.0 (2.5, 5, 8 GT/s)	
Memory Population	4 channels of up to 3 RDIMMs, LRDIMMs, or 3DS LRDIMMs	6 channels of up to 2 RDIMMs, LRDIMMs, or 3DS LRDIMMs	
Max Memory Speed	Up to 2400	Up to 2666	
TDP (W)	145 - 55	205 - 70	

(intel)

Intel[®] Xeon[®] Phi - Knight Landing

Benchmarking Platforms

	Intel(R) Xeon(R) CPU E5-2697 v4	Intel(R) Xeon(R) Gold 6148	Intel(R) Xeon Phi(TM) CPU 7250
Code Name	Broadwell (BDW)	Skylake (SKX)	Knights Landing (KNL)
Sockets	2	2	1
Cores	36	40	68
Threads (HT enabled)	72	80	272
CPU Clock (GHz)	2.3	2.4	1.4
HBM	-	-	16 GB
Memory	128 GB @ 2400 MHz	192 GB @ 2666 MHz	98 GB @ 2400 MHz
ISA	AVX2	AVX512{F, DQ, CD, BW, VL}	AVX512{F,PF, ER, CD}

AVX2 Vs AVX512F

		AVX2	AVX512
Vector Register Length		256 bits	512 bits
# of FMA's per cycle		2	2
Single Precision	# of Elements per register	8	16
	Flops per cycle	32	64
Double Precision	# of Elements per register	4	8
	Flops per cycle	16	32

Baseline Performance

Performance Optimizations: OpenMP Parallelism

Developed a hybrid MPI-OpenMP version of distance calculation function to effectively use the FMA units and to reduce the bottleneck on rank-0

Pin each MPI to a KNL "tile" and spawn 8 threads (4 threads per core)

2.8x improvement

11

KNL: OMP Scheduling

Because of the triangle inequality and sorted inter-centroid techniques, a given chunk of points assigned to a thread can skip computing the point-to-centroid distance calculation

This introduces load imbalance and leads to sub-optimal performance

Dynamic loop scheduling improves performance by 1.4x over static partitioning

KNL: MCDRAM

With higher volume of memory requests, MCDRAM gives 2.6x better performance

Performance Optimizations: BDW, SKX

Hybrid MPI-OpenMP implementation enables to effectively use hyper threads/logical threads

BDW: 26% improvement with 9 MPI and 8 OMP

SKX: 38% improvement with 10 MPI and 8 OMP

k-means as BLAS Formulation

□ For observation vector x_i and centroid vector z_j , the squared distance between them is $D_{ij} = ||x_i - z_j||^2$

- **D** Binomial expansion: $D_{ij} = ||x_i||^2 + ||z_j||^2 2 * x_i * z_j$
- □ The matrix of squared distances can thus be expressed as $D = \bar{x} \ 1^T + 1 \ \bar{z}^T + 2 \ X^T \ Z$, where X and Z are matrices of observations and centroids, respectively, stored in columns, and \bar{x} and \bar{z} are vectors of the sum of squares of the columns of X and Z, and 1 is a vector of all 1s
- The above expression for D can be calculated in terms of a level-3 BLAS operation (xGEMM), followed by two rank-one updates (xGER, a level-2 operation)
- Use Intel Math Kernel Library (MKL) to extract the best possible performance for BLAS functions

Performance Summary

BLAS formulation provides the best performance on KNL, but slower than P2P distance calculation on BDW and SKX Overall performance improvements Given KNL: 3.5x BDW: 1.3x **G** SKX: 1.4x

Great Smoky Mountains National Park – Vegetation [1] 3.55% [2] 3.96% [4] 5.01%

fn 30

5 30

10 20 30 40

% of Profile

[9] 2.00%

10 20 30 40

% of Profile

[14] 0.47%

[5] 5.81%

10 20 30

% of Profile

[10] 4.83%

10 20 30

% of Profile

[15] 2.92%

Future Work

- Larger datasets
 - Multiple nodes of SKX and KNL
 - Persistent Memory/NVRAM
- De-centralized version of MPI + OpenMP
- Heuristic to switch between "traditional" distance calculation and "BLAS" formulation methods

Future Trends

Hardware Architectures

- Compute
 - Intel Nervana ASIC
 - Neuromorphic Computing
 - FPGA's
- Persistent Memory
 - Intel 3D Xpoint Memory
- Lower Precision

Software Optimizations

- Parallelization
- SIMD Vectorization
- Efficient usage of memory hierarchy
 - Caches
 - On-package high bandwidth memory
 - Persistant Memory

19

Legal Disclaimer

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED. BY ESTOPPEL OR OTHERWISE. TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE. MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT. COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. A "Mission Critical Application" is any application in which failure of the Intel Product could result, directly or indirectly, in personal injury or death. SHOULD YOU PURCHASE OR USE INTEL'S PRODUCTS FOR ANY SUCH MISSION CRITICAL APPLICATION, YOU SHALL INDEMNIFY AND HOLD INTEL AND ITS SUBSIDIARIES, SUBCONTRACTORS AND AFFILIATES, AND THE DIRECTORS, OFFICERS, AND EMPLOYEES OF EACH, HARMLESS AGAINST ALL CLAIMS COSTS. DAMAGES. AND EXPENSES AND REASONABLE ATTORNEYS' FEES ARISING OUT OF. DIRECTLY OR INDIRECTLY, ANY CLAIM OF PRODUCT LIABILITY, PERSONAL INJURY. OR DEATH ARISING IN ANY WAY OUT OF SUCH MISSION CRITICAL APPLICATION. WHETHER OR NOT INTEL OR ITS SUBCONTRACTOR WAS NEGLIGENT IN THE DESIGN. MANUFACTURE. OR WARNING OF THE INTEL PRODUCT OR ANY OF ITS PARTS.

All products, computer systems, dates and figures specified are preliminary based on current expectations, and are subject to change without notice.

Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined". Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them. The information here is subject to change without notice. Do not finalize a design with this information. The products described in this document may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current characterized errata are available on request. Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order. Copies of documents which have an order number and are referenced in this document, or other Intel literature, may be obtained by calling 1-800-548-4725, or go to: http://www.intel.com/design/literature.htm

Intel, Intel Xeon, Intel Xeon PhiTH are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States or other countries.

*Other brands and names may be claimed as the property of others.

Copyright 2016 Intel Corporation. All rights reserved.

20

Optimization Notice

Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel.

Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this notice.

Notice revision #20110804

