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Motivation

 Rapid proliferation of data in Earth Sciences and other domains

 Advanced sensors – high fidelity data

 Remote Sensing Platforms

 Observational Facilities

 Applications

 Vegetation Mapping and Characterization

 Development of Eco-regions

 Species Distribution

 Critical need for High Performance Big Data Analytics
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Parallel k-means Clustering

 Centralized Master-Worker paradigm

 Pick initial centroids

 Workers

 Compute observation-to-centroid distances

 Update centroids and cluster assignments

 Dataset

 # of Observations = 1.5 million

 # of Co-ordinates = 74

 # of Clusters = 2000
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Accelerated k-means: Triangle Inequality
 Implemented an accelerated version of the k-means process using two 

techniques described by Phillips (doi:10.1109/IGARSS.2002.1026202)

 Use triangle inequality principle to eliminate unnecessary point-to-centroid 
distance computations based on the previous cluster assignments and the new 
inter-centroid distances

 Reduce evaluation overhead by sorting inter-centroid distances so that new 
candidate centroids 𝐶𝑗 are evaluated in order of their distance from the former 
centroid 𝐶𝑖. Once the critical distance 2 ∗ 𝑑(𝑝, 𝐶𝑖) is surpassed, no additional 
evaluations are needed, as the nearest centroid is known from a previous 
evaluation
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Intel® Xeon® - Skylake
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Intel® Xeon® Phi - Knight Landing

STREAM Traiad (GB/s) : MCDRAM (400+), DDR (90+)
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Benchmarking Platforms

Intel(R) Xeon(R) CPU 
E5-2697 v4 

Intel(R) Xeon(R) Gold 
6148

Intel(R) Xeon Phi(TM) 
CPU 7250

Code Name Broadwell (BDW) Skylake (SKX) Knights Landing (KNL)

Sockets 2 2 1

Cores 36 40 68

Threads
(HT enabled)

72 80 272

CPU Clock (GHz) 2.3 2.4 1.4

HBM - - 16 GB

Memory 128 GB @ 2400 MHz 192 GB @ 2666 MHz 98 GB @ 2400 MHz

ISA AVX2 AVX512{F, DQ, CD, 
BW, VL}

AVX512{F,PF, ER, CD}
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AVX2 Vs AVX512F

0

1000

2000

3000

4000

5000

6000

7000

Broadwell (AVX2) Skylake (AVX512) Knights Landing

(AVX512)

G
F

lo
p

s

Peak Theoretical Performance

Single Precision (FP32) Double Precision (FP64)

AVX2 AVX512

Vector Register Length 256 bits 512 bits

# of FMA’s per cycle 2 2

Single 
Precision
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Elements 
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8 16
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cycle

32 64
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Baseline Performance
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 1.3x speed-up on SKX 
compared to BDW

 Significant slowdown (2.2x) on 
KNL
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Performance Optimizations: OpenMP Parallelism

 Developed a hybrid MPI-OpenMP
version of distance calculation 
function to effectively use the FMA 
units and to reduce the bottleneck on 
rank-0

 Pin each MPI to a KNL “tile” and 
spawn 8 threads (4 threads per core)

 2.8x improvement 
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KNL: OMP Scheduling

 Because of the triangle inequality and 
sorted inter-centroid techniques, a given 
chunk of points assigned to a thread can 
skip computing the point-to-centroid 
distance calculation

 This introduces load imbalance and leads 
to sub-optimal performance

 Dynamic loop scheduling improves 
performance by 1.4x over static 
partitioning0
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KNL: MCDRAM
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MCDRAM DDR4

With higher volume of memory requests, MCDRAM gives 2.6x better 
performance  
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Performance Optimizations: BDW, SKX
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 Hybrid MPI-OpenMP implementation enables to effectively use hyper 
threads/logical threads

 BDW: 26% improvement with 9 MPI and 8 OMP
 SKX: 38% improvement with 10 MPI and 8 OMP
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k-means as BLAS Formulation

 For observation vector 𝑥𝑖 and centroid vector 𝑧𝑗, the squared distance between 
them is 𝐷𝑖𝑗 = ||𝑥𝑖 − 𝑧𝑗||

2

 Binomial expansion:  𝐷𝑖𝑗 = | 𝑥𝑖 |
2 + ||𝑧𝑗||

2 − 2 ∗ 𝑥𝑖 ∗ 𝑧𝑗

 The matrix of squared distances can thus be expressed as
D =  𝑥 1𝑻 + 1  𝑧𝑻 + 2 𝑋𝑇 𝑍, where X and Z are matrices of observations and 
centroids, respectively, stored in columns, and  𝑥 and  𝑧 are vectors of the sum of 
squares of the columns of X and Z, and 1 is a vector of all 1s 

 The above expression for D can be calculated in terms of a level-3 BLAS 
operation (xGEMM), followed by two rank-one updates (xGER, a level-2 operation)

 Use Intel Math Kernel Library (MKL) to extract the best possible performance for 
BLAS functions
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Performance Summary
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Comparison of k-means Implementations

BLAS P2P-Baseline (MPI) P2P-Optimized (MPI+OpenMP)

 BLAS formulation 
provides the best 
performance on KNL, 
but slower than P2P 
distance calculation on 
BDW and SKX

 Overall performance 
improvements
 KNL: 3.5x
 BDW: 1.3x
 SKX: 1.4x
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Great Smoky Mountains National Park – Vegetation 
Study
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Future Work

 Larger datasets

 Multiple nodes of SKX and KNL

 Persistent Memory/NVRAM

 De-centralized version of MPI + OpenMP

 Heuristic to switch between “traditional” distance calculation and “BLAS” 
formulation methods
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Future Trends

 Hardware Architectures

 Compute

 Intel Nervana ASIC

 Neuromorphic Computing

 FPGA’s

 Persistent Memory

 Intel 3D Xpoint Memory

 Lower Precision

 Software Optimizations

 Parallelization

 SIMD Vectorization

 Efficient usage of memory 
hierarchy

 Caches

 On-package high bandwidth 
memory

 Persistant Memory
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Legal Disclaimer
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Optimization Notice

Intel's compilers may or may not optimize to the same degree for non-Intel 
microprocessors for optimizations that are not unique to Intel microprocessors. 
These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other 
optimizations. Intel does not guarantee the availability, functionality, or effectiveness 
of any optimization on microprocessors not manufactured by Intel. 

Microprocessor-dependent optimizations in this product are intended for use with 
Intel microprocessors. Certain optimizations not specific to Intel microarchitecture 
are reserved for Intel microprocessors. Please refer to the applicable product User 
and Reference Guides for more information regarding the specific instruction sets 
covered by this notice.

Notice revision #20110804 




