

Office of Science

Systematic Assessment of Terrestrial Biogeochemistry in Earth System Models

Forrest M. Hoffman^{1,2}, Nathan Collier¹, Mingquan Mu³, Min Xu¹, Gretchen Keppel-Aleks⁴, David M. Lawrence⁵, Charles D. Koven⁶, Weiwei Fu³, William J. Riley⁶, and James T. Randerson³

¹Oak Ridge National Laboratory, Oak Ridge, TN, USA
²University of Tennessee, Knoxville, TN, USA
³University of California, Irvine, CA, USA
⁴University of Michigan, Ann Arbor, MI, USA
⁵National Center for Atmospheric Research, Boulder, CO, USA
⁶Lawrence Berkeley National Laboratory, Berkeley, CA, USA

AGU Presentation B43H-04

December 12, 2024

Washington, D.C. | 9-13 December 2024

WHAT'S NEXT FOR SCIENCE

- A **benchmark** is a quantitative test of model function achieved through comparison of model results with observational data
- Acceptable performance on a benchmark is a necessary but not sufficient condition for a fully functioning model
- Functional relationship benchmarks offer tests of model responses to forcings and yield insights into ecosystem processes
- Effective benchmarks must draw upon a broad set of independent observations to evaluate model performance at multiple scales

Models often fail to capture the amplitude of the seasonal cycle of atmospheric CO₂

Models may reproduce correct responses over only a limited range of forcing variables

- To **quantify and reduce uncertainties** in carbon cycle feedbacks to improve projections of future climate change (Eyring et al., 2019; Collier et al., 2018)
- To diagnose impacts of process-based or machine learning model development on process representations and their interactions
- To **guide synthesis efforts**, such as the Intergovernmental Panel on Climate Change (IPCC), by determining which models are broadly consistent with observations (Eyring et al., 2019)
- To **increase scrutiny of key datasets** used for model evaluation
- To **identify gaps in existing observations** needed to inform model development
- To **accelerate delivery of new measurement datasets** for rapid and widespread use in model assessment

A community coordination activity created to:

- **Develop internationally accepted benchmarks** for land model performance by drawing upon collaborative expertise
- **Promote the use of these benchmarks** for model intercomparison
- Strengthen linkages between experimental, remote sensing, and Earth system modeling communities in the design of new model tests and new measurement programs
- Support the design and development of open source benchmarking tools

Energy and Water Cycles

Carbon and Biogeochemical Cycles

Sandia

- First ILAMB Workshop was held in Exeter, UK, on June 22–24, 2009
- Second ILAMB Workshop was held in Irvine, CA, USA, on January 24–26, 2011
 - ~45 researchers participated from the US, Canada, UK, Netherlands, France, Germany, Switzerland, China, Japan, and Australia
 - Developed methodology for model-data comparison and baseline standard for performance of land model process representations (Luo et al., 2012)

2016 International Land Model Benchmarking (ILAMB) Workshop May 16–18, 2016, Washington, DC

Third ILAMB Workshop was held May 16–18, 2016

- Workshop Goals
 - Design of new metrics for model benchmarking
 - Model Intercomparison Project (MIP) evaluation needs
 - Model development, testbeds, and workflow processes
 - Observational datasets and needed measurements
- Workshop Attendance
 - 60+ participants from Australia, Japan, China, Germany,
 Sweden, Netherlands, UK, and US (10 modeling centers)
 - \circ ~25 remote attendees at any time

Date DOE/SC-XXXX | doi:10.7249/XXXXXXXX

2016 International Land Model Benchmarking (ILAMB) Workshop Report

(Hoffman et al., 2017)

- ILAMBv1 released at 2015 AGU Fall Meeting Town Hall, doi:10.18139/ILAMB.v001.00/1251597
- ILAMBv2 released at 2016 ILAMB Workshop, doi:<u>10.18139/ILAMB.v002.00/1251621</u>
- ILAMBv3 Coming Soon!
- Open Source software written in Python; runs in parallel on laptops, clusters, and supercomputers
- Routinely used for land model evaluation during development of ESMs, including the E3SM Land Model (Zhu et al., 2019) and the CESM Community Land Model (Lawrence et al., 2019)
- **Models are scored** based on statistical comparisons and functional response metrics

WCYC

SP CN

Biomass Burned Area Gross Primary Productivity Leaf Area Index Global Net Ecosystem Carbon Balance Net Ecosystem Respiration Soil Carbon Evapotranspiration

Latent Heat

Albedo

Terrestrial Water Storage Anomaly

Surface Upward SW Radiation

ILAMB Produces Diagnostics and Scores Models

- ILAMB generates a top-level **portrait plot** of models scores
- For every variable and dataset, ILAMB can automatically produce
 - **Tables** containing individual metrics and metric scores (when relevant to the data), including
 - Benchmark and model period mean
 - Bias and bias score (S_{bias})
 - **Root-mean-square error (RMSE)** and **RMSE score** (S_{rmse})
 - Phase shift and seasonal cycle score (S_{phase})
 - Interannual coefficient of variation and IAV score (S_{iav})
 - Spatial distribution score (S_{dist})
 - Overall score (S_{overall})

$$S_{\text{overall}} = \frac{S_{\text{bias}} + 2S_{\text{rmse}} + S_{\text{phase}} + S_{\text{iav}} + S_{\text{dist}}}{1 + 2 + 1 + 1 + 1}$$

- Graphical diagnostics
 - Spatial contour maps
 - Time series line plots
 - Spatial Taylor diagrams (Taylor, 2001)

Similar tables and graphical diagnostics for functional relationships

- Biogeochemistry: Biomass (Contiguous US, Pan Tropical Forest), Burned area (GFED3), CO₂ (NOAA GMD, Mauna Loa), Gross primary production (Fluxnet, GBAF), Leaf area index (AVHRR, MODIS), Global net ecosystem carbon balance (GCP, Khatiwala/Hoffman), Net ecosystem exchange (Fluxnet, GBAF), Ecosystem Respiration (Fluxnet, GBAF), Soil C (HWSD, NCSCDv22, Koven)
- **Hydrology:** Evapotranspiration (GLEAM, MODIS), Evaporative fraction (GBAF), Latent heat (Fluxnet, GBAF, DOLCE), Runoff (Dai, LORA), Sensible heat (Fluxnet, GBAF), Terrestrial water storage anomaly (GRACE), Permafrost (NSIDC)
- **Energy:** Albedo (CERES, GEWEX.SRB), Surface upward and net SW/LW radiation (CERES, GEWEX.SRB, WRMC.BSRN), Surface net radiation (CERES, Fluxnet, GEWEX.SRB, WRMC.BSRN)
- **Forcing:** Surface air temperature (CRU, Fluxnet), Diurnal max/min/range temperature (CRU), Precipitation (CMAP, Fluxnet, GPCC, GPCP2), Surface relative humidity (ERA), Surface down SW/LW radiation (CERES, Fluxnet, GEWEX.SRB, WRMC.BSRN)

ILAMB Assessing Multiple Generations of CLM RUBISCO

		NA MA!
Facturations and Carthern Ovela	0~	00
Ecosystem and Carbon Cycle		
Biomass	_	
Burned Area		
Carbon Dioxide		
Gross Primary Productivity		
Leaf Area Index		
Global Net Ecosystem Carbon Balance		
Net Ecosystem Exchange		
Ecosystem Respiration		
Soil Carbon		
Hydrology Cycle		
Evapotranspiration		
Evaporative Fraction		
Latent Heat		
Runoff		
Sensible Heat		
Terrestrial Water Storage Anomaly		
Permafrost		
Radiation and Energy Cycle		
Albedo		
Surface Upward SW Radiation		
Surface Net SW Radiation		
Surface Upward LW Radiation		
Surface Net LW Radiation		
Surface Net Radiation		
Forcings		

- Improvements in mechanistic treatment of hydrology, ecology, and land use with much more complexity in Community Land Model version 5 (CLM5)
- Simulations improved even with enhanced complexity
- Observational datasets not always self-consistent
- Forcing uncertainty confounds assessment of model development

http://webext.cgd.ucar.edu/I20TR/ build set1F/

..... BERKELEY LAB

ILAMB Graphica

SPATIAL TAYLOR DIAGRAM

Spatially integrated regional mean

MONTHLY ANOMALY

Jan Feb Mar Apr May Jun

ANNUAL CYCLE

Diagnostics

4.0 -

3.5

-p 3.0 2-m 6 2.5

2.0

Nov Dec

- The CMIP6 suite of land models (right) has improved over the CMIP5 suite of land models (left)
- The multi-model mean outperforms any single model for each suite of models
- The multi-model mean CMIP6 land model is the "best model" overall
- Why did CMIP6 land models improve?

	R	elati	ive :	Scal	е						
Wors	Worse Value Better Value										
N	Aissi	ng [Data	or	Erro	r					

(Hoffman et al., in prep)

		ST	1. SN	221	200 - C	ALL C	NSA:	2.55	14.15	L.NE	222	22	Ch	(A)	52	1.1. M	A NIN	OIL	5.0
	60	00	E. C.	540	R	2 Mil	2 18	120	***C	Co.	N.C.	8	- MR	NR	10	St	Ne	a Nes	5.
osystem and Carbon Cycle																			
Biomass																			
Burned Area																			
Carbon Dioxide																			
Gross Primary Productivity																			
_eaf Area Index																			
Global Net Ecosystem Carbon Balance																			
Net Ecosystem Exchange																			
Ecosystem Respiration																			
Soil Carbon									_										
drology Cycle																			
Evapotranspiration																			
Evaporative Fraction																			
_atent Heat																			
Runoff																			
Sensible Heat																			
Terrestrial Water Storage Anomaly																			
Permafrost																			
diation and Energy Cycle																			
Albedo																			
Surface Upward SW Radiation																			
Surface Net SW Radiation																			
Surface Upward LW Radiation																			
Surface Net LW Radiation																			
Surface Net Radiation																			
rcings																			
Surface Air Temperature																			
Diurnal Max Temperature																			
Diurnal Min Temperature																			
Diurnal Temperature Range																			
Precipitation																			
Surface Relative Humidity																			
Surface Downward SW Radiation																			
Surface Downward LW Radiation																			
lationships																			
BurnedArea/GFED4S																			
GrossPrimaryProductivity/GBAF																			
_eafAreaIndex/AVHRR																			
_eafAreaIndex/MODIS																			
Evapotranspiration/GLEAM																			
Evapotranspiration/MODIS																			

	the restriction restriction restriction															
					ids	1Pg VI-	6	ntersectume	ntillonni	lent						
				ight	aldian	inte Me?	eo	I CON MER	».		.5	i ntt	કો			Score
		-2	d Data	lo eric	d mait	Period	ai	Petr	n.2 d.1	am?	8	int line	oreth	ccore 1	al Cycle	Distrib
	\$	ownio	od Noc	el Ber	chi. Noc	Benchi		Biasla	RM	Phase	2	Bias	PRMSF	Seas	on spath	al over
Benchmark	[:]	114.														
bcc-csm1-1	[:]	123.	112.	114.	8.79	0.0945		0.238	1.51	1.01		0.484	0.435	0.830	0.955	0.628
BCC-CSM2-MR	[:]	114.	107.	113.	5.88	0.671		-0.0233	1.52	1.11		0.479	0.447	0.817	0.941	0.626
CanESM2	[:]	129.	117.	114.	9.54			0.0601	2.31	2.00		0.388	0.437	0.650	0.836	0.549
CanESM5	E	141.	128.	114.	10.1			0.730	1.87	1.60		0.449	0.418	0.710	0.948	0.589
CESM1-BGC	[:]	129.	123.	113.	5.55	0.660		0.379	1.66	1.20		0.426	0.468	0.765	0.889	0.603
CESM2	[:]	110.	104.	113.	5.57	0.642		-0.0542	1.62	1.32		0.458	0.466	0.774	0.933	0.619
GFDL-ESM2G	[:]	167.	152.	114.	12.4			1.26	2.78	1.38		0.377	0.288	0.735	0.897	0.517
GFDL-ESM4	[:]	105.	99.0	114.	6.18			-0.177	1.59	1.49		0.495	0.403	0.702	0.939	0.588
IPSL-CM5A-LR	[:]	165.	150.	113.	11.7	0.515		1.18	2.68	1.20		0.327	0.352	0.781	0.896	0.542
IPSL-CM6A-LR	[:]	115.	109.	113.	5.27	0.708		0.111	1.39	1.14		0.547	0.477	0.790	0.961	0.650
MeanCMIP5	[:]	121.	115.	114.	6.65			0.574	1.41	0.981		0.494	0.502	0.799	0.965	0.652
MeanCMIP6	[:]	116.	110.	114.	6.26			0.129	1.17	0.931		0.572	0.522	0.826	0.956	0.679
MIROC-ESM	[:]	129.	118.	102.	9.04	11.4		0.396	1.90	1.27		0.463	0.435	0.767	0.920	0.604
MIROC-ESM2L	E	116.	104.	113.	9.90	0.119		-0.0111	1.95	1.99		0.409	0.379	0.628	0.920	0.543
MPI-ESM-LR	[:]	169.	159.	104.	8.91	9.81		1.36	2.36	1.29		0.402	0.371	0.715	0.930	0.558
MPI-ESM1.2-LR	[:]	141.	133.	104.	6.89	9.81		0.725	2.06	1.13		0.409	0.393	0.769	0.925	0.578
NorESM1-ME	[:]	129.	120.	114.	7.82			0.386	1.86	1.25		0.387	0.456	0.761	0.856	0.583
NorESM2-LM	[:]	107.	97.5	114.	7.59			-0.0828	1.63	1.31		0.443	0.472	0.791	0.938	0.623
UK-HadGEM2-ES	[:]	137.	130.	113.	6.93	0.848		0.602	2.01	1.10		0.389	0.388	0.820	0.855	0.568
UKESM1-0-LL	[:]	126.	119.	113.	7.06	0.825		0.387	1.77	1.16		0.436	0.419	0.791	0.924	0.598

.....

Gross Primary Productivity

- Multimodel GPP is compared with global seasonal GBAF estimates
- We can see
 Improvements
 across generations
 of models (e.g.,
 CESM1 vs. CESM2,
 IPSL-CM5A vs. 6A)
- The mean CMIP6 and CMIP5 models perform best

SurfaceDownwardSWRadiation/CERESed4.1

SurfaceNetSWRadiation/CERESed4.1

SurfaceAirTemperature/CRU4.02

Reasons for Land Model Improvements

ESM improvements in climate forcings (temperature, precipitation, radiation) likely partially drove improvements exhibited by land carbon cycle models

Reasons for Land Model Improvements

- Differences in bias scores for
- temperature, precipitation, and incoming radiation were primarily positive, further indicating more realistic climate representation

(Hoffman et al., in prep)

Across all land models, scores for most state and flux variables improved (216) or remained nearly the same (202), although some were degraded (74). While atmospheric forcings from CMIP6 ESMs were improved over those from CMIP5 ESMs, the largest improvements were in land model **variable-to-variable relationships**, suggesting that increased land model development was also partially responsible for higher CMIP6 land model scores.

Reasons for Land Model Improvements

- While forcings got better, the largest improvements were in
- variable-to-variable relationships,
- suggesting that increased land model complexity was also partially responsible for higher CMIP6 model scores

ILAMB & IOMB CMIP5 vs 6 Evaluat RUBISCO

- (a) ILAMB and (b) IOMB have been used to evaluate how land and ocean model performance have changed from CMIP5 to CMIP6
- Model fidelity is assessed through comparison of historical simulations with a wide variety of contemporary observational datasets
- The UN's Intergovernmental Panel on Climate Change (IPCC) Sixth Assessment Report (AR6) from Working Group 1 (WG1) Chapter 5 contains the full ILAMB/IOMB evaluation as Figure 5.22

	CMIP5 ESMs									CMIP6 ESMs										
luation			CESM1-BGC	GFDL-ESM2G	IPSL-CM5A-LR	MIROC-ESM	MPI-ESM-LR	NorESM1-ME	HadGEM2-ES	BCC-CSM2-MR	CanESM5	CESM2	GFDL-ESM4	IPSL-CM6A-LR	MIROC-ES2L	MPI-ESM1.2-LR	NorESM2-LM	UKESM1-0-LL	Mean CMIP5	Mean CMIP6
Land Ecosystem & Carbon Cycle	-0.72	-0.93	-1.55	-1.51	-0.13	0.60	-0.43	-1.31	0.19	-0.43	0.66	0.48	-1.09	0.22	0.60	-0.07	1.00	0.49	1.63	2.30
Biomass	0.20	-0.45	-1.52	-0.40	-1.26	-0.26	-1.07	-1.77	0.92	1.39	0.74	-0.20	-0.54	0.16	0.93	-0.96	-0.01	1.04	1.23	1.82
Burned Area			-0.87				0.10	-0.83				1.60								
Leaf Area Index	-0.20	-0.64	-1.30	-2.53	- <mark>0.01</mark>	0.30	0.01	-1.85	-0.16	0.27	0.08	0.34	-0.70	1.19	0.82	0.46	0.37	0.69	1.04	1.81
Soil Carbon	0.27	1.26	-1.46	0.07	0.75	0.47	-0.03	-1.14	0.07	0.23	1.35	-0.99	-2.04	-1.55	0.90	-0.75	-0.17	0.24	1.01	1.48
Gross Primary Productivity	0.59	-1.23	0.01	-1.81	-1.40	0.29	-0.53	-0.24	-1.04	0.77	0.04	0.59	-0.38	1.17	-1.02	-0.37	0.73	0.09	1.51	2.22
Net Ecosystem Exchange	-0.42	-1.81	-0.21	-0.65	1.10	-0.24	0.80	0.02	-1.03	-1.02	-1.19	0.59	1.69	-0.42	0.63	-0.21	1.08	-1.43	1.28	1.43
Ecosystem Respiration	0.90	-0.56	-0.86	-0.24	-1.35	0.99	-0.01	-0.94	-1.54	0.81	0.59	0.51	-0.79	0.90	-0.21	-1.24	0.43	-0.94	1.34	2.21
Carbon Dioxide		-1.54	-0.36	-2.92	-0.74	1.53	-0.00	0.37	0.85		0.42	0.26	0.39	0.59	1.10	-0.87	0.21	0.69	0.09	-0.07
Global Net Carbon Balance		-1.64	-0.88	-1.13	0.17	-0.31	-0.38	-0.50	0.24		-0.23	1.34	-1.70	0.17	-0.74	1.45	1.56	0.26	0.92	1.40
Land Hydrology Cycle		-0.42	0.44	-0.18	-0.49	-0.52	-0.57	0.17	0.70	0.15	-0.47	1.51	-1.24	0.58	-0.72	-0.83	0.97	0.87	1.00	1.70
Evapotranspiration	-0.82	-0.99	-0.27	-1.02	0.64	-1.14	-0.62	-0.60	0.28	0.39	-1.08	1.09	0.65	0.43	-1.40	-1.01	0.82	1.05	1.41	2.20
Evaporative Fraction	-0.34	0.74	0.74	-0.14	-0.85	0.21	-1.98	0.22	-0.34	0.10	0.11	1.25	-0.88	1.29	-1.65	-1.81	1.11	-0.06	0.98	1.29
Terrestrial Water Storage Anomaly	2.70	0.45	0.47	0.50	0.20	0.24	0.25	0.42	0.50	0.15	0.00	0.05	2.01	0.47	0.37	0.15	0.20	0.53	0.40	0.50
Permeterial water Storage Anomaly	-2.79	-0.45	0.47	0.50	-0.38	0.34	0.35	0.43	0.58	0.15	-0.08	0.95	-2.91	0.43	0.37	0.15	0.39	0.51	0.49	0.50
h) Ocean Bonchmarking Bocults	-0.00	-2.20	0.01	0.15	0.85	0.09	0.50	0.09	-0.30	-0.11	-5.02	0.85	0.74	-0.10	0.49	0.42	0.09	0.45	0.00	0.25
			2.18	0.20	.0.20		0.04		0.22		.0.37	0.93	.0.37	.0.26	.0.91	0.67	1 93	0.27	0.30	0.67
Chlorophyll		-1.50		0.44	1.02		0.49	-	0.56		-0.67	0.88	0.21	0.10	-1.02	-0.41	-2.19	0.18	0.13	0.04
Oxygen surface			0.73	-0.13	-1.98		-0.53	-1.53	-0.29	-	0.73	0.34	-0.09	-0.41	0.35	-0.30	0.40	0.49	0.64	1.57
Ocean Nutrients			-0.84	-0.10	0.91		-0.80	-1.25				-0.02	1.00	1.88		-0.90	-1.14	-0.17	-0.16	1.60
Nitrate, surface		0.21	-1.63	0.67	1.22		-0.18	-1.70	0.82		1.21	-0.90	0.29	1.21	1.02	0.39	-1.78	-0.56	-0.47	0.18
Phosphate, surface			-0.69	-0.04	0.04		-0.45	-0.43				0.39	-0.14	0.17	-0.41	-0.98	0.00	0.02	0.88	1.63
Silicate, surface			0.44	-0.71	0.24		-0.81	-0.20	-2.16			0.50	1.24	1.60		-1.21	-0.19	0.18	-0.29	1.37
Ocean Carbon											1.24	-0.23	-0.62	-0.69	-1.08	-1.12	1.31			1.19
TAIk, surface		-0.27	1.01	0.12	0.19		0.32	-2.31	-0.22		0.06	-0.36	0.85	-0.42	0.29	-2.40	1.27	0.06	1.27	0.54
Salinity, 700m	0.44	-0.35	-1.06	-0.54	0.70	0.46	-0.46	-0.80	0.32	0.36	0.25	-1.16	-0.47	0.54	0.33	-0.39	-0.87	-0.54	1.58	1.64
Ocean Relationships			-1.86	-0.36	-0.29		1.50	-0.43	0.68		-0.02	0.72	1.20	0.17	-1.86	0.02		-1.12	0.39	1.25
Oxygen, surface/WOA2018			0.27	0.23	-0.63		-0.26	-0.12	-0.38		0.29	-0.21	0.19	0.18	0.14	-0.07		0.03	-0.23	0.53
Nitrate, surface/WOA2018		-2.41	-1.38	-0.18	0.06		1.41	-0.16	0.78		0.09	0.79	1.07	0.26	-1.35	0.20		-0.74	0.52	1.04
								F	Rela	ativ	e S	cal	e							
										Ť										
						w	ors	e V	alu	e	B	ett	er	Val	lue					

Missing Data or Error

(b) Ocean B

- Continuously updated documentation as new modules are being developed: https://ilamb3.readthedocs.io/
- In [2]: import matplotlib.pyplot as plt
 import ilamb3
 from ilamb3.analysis import bias_analysis

Initialize an analysis, specifying the variable name to be compared.

In [3]: analysis = bias_analysis("biomass")

Load two ILAMB data products using a built-in catalog

```
In [4]: cat = ilamb3.ilamb_catalog()
ds_esacci = cat["biomass | ESACCI"].read()
ds_xu = cat["biomass | XuSaatchi2021"].read()
```

Apply the analysis using the ESACCI product as a reference.

In [5]: df,ds_esacci,ds_xu = analysis(ds_esacci,ds_xu)

In [6]: df

Du	t	[6]	:	

	source	region	analysis	name	type	units	value
0	Reference	None	Bias	Period Mean	scalar	Mg ha-1	24.019928
1	Comparison	None	Bias	Period Mean	scalar	Mg ha-1	25.676543
2	Comparison	None	Bias	Bias	scalar	Mg ha-1	-16.670597
3	Comparison	None	Bias	Bias Score	score	1	0.398491

Q Search

I WANT TO ...

METHODS

Relationships

Balance

REFERENCE

Package API

Bias

Add an Analysis

Preliminary Definitions

Global Net Ecosystem Carbon

Run Analysis in a Notebook

Documentation for ilamb3

• & <u>ò</u> =

A rewrite of ILAMB has been a long time in the works. The ecosystem of scientific python libraries has changed dramatically since we first wrote ILAMB. Much of the software we wrote to understand the CF conventions is now more completely and elegantly handled by xarray and related packages.

Originally we wrote ILAMB to function like a replacement to the diagnostic packages that modeling centers run–a holistic analysis over large amounts of model output. However, since then we have seen an increased demand from users to also run parts ILAMB analyses in their own scripts and notebooks. As this was not a use case for which we originally designed, it was quite difficult and we ended up writing a lot of custom code to meet users' needs.

We are building the new ILAMB from the bottom up, documenting and releasing as we go. This is in part because a full rewrite is a lot of work and this strategy allow users to work with what we have completed to this point. It also is a way for us to communicate with the community for feedback to help hone the package design. Eventually the goal is that this package will replace the current ILAMB package.

Design Principles

As development continues, we will update this list of design principles which guide ilamb3 developments.

 The ILAMB analysis methods should be more modular and operate on xarray datasets. Our original implementation made adding datasets easy, but the analysis itself was quite challenging to expand. It is our onait to make adding an analysis method more cimple and our back obtice the the varray.

- ILAMBv3 allows for analysis methods to be imported into Python scripts and Jupyter notebooks and used to produce the scalars and plots synthesized in the full analysis
- At right, the ILAMB bias analysis is applied to two reference data products and show a table of scalar values

CMIP Rapid Evaluation Framework Overview

The Coupled Model Intercomparison Project (CMIP) Model Benchmarking Task Team developed a system specification for a Rapid Evaluation Framework (REF) that would leverage community benchmarking metrics to evaluate CMIP model output as they are submitted to the Earth System Grid Federation (ESGF)

Climate Model Benchmarking Task Team - Birgit Hassler & Forrest Hoffman, Co-leads

Find out more about the CMIP Rapid Evaluation Framework (REF)

The CMIP AR7 Fast Track Rapid Evaluation Framework (AR7 FT REF) will be a complete end to end system providing a systematic and rapid performance assessment of the expected models participating in the CMIP AR7 Fast Track, supporting the next IPCC Assessment Report 7 (AR7) cycle.

The REF is designed to be a starting point for the community to develop and build upon, with applications across the World Climate Research Programme (WCRP) and beyond.

Find out more at wcrp-cmip.org/cmip7/rapid-evaluation-framewor <u>k/</u> This project has been made possible by funding from:

- **Model benchmarking** is increasingly important as model complexity increases
- Systematic model benchmarking is useful for
 - **Verification** during model development to confirm that new model code improves performance in a targeted area without degrading performance in another area
 - **Validation** when comparing performance of one model or model version to observations and to other models or other model versions
- The **ILAMB package** employs a suite of in situ, remote sensing, and reanalysis datasets to comprehensively evaluate and score land model performance, *irrespective of any model structure or set of process representations*
- ILAMB is **Open Source**, is written in **Python**, **runs in parallel** on laptops to supercomputers, and has been **adopted in most modeling centers**
- Usefulness of ILAMB depends on the quality of incorporated observational data, characterization of uncertainty, and selection of relevant metrics

