New Mechanisms, Feedbacks, and Approaches for Improving Predictions of Global Biogeochemical Cycles in Earth System Models I Posters
Friday, December 16, 2016 08:00–12:20
Moscone South Poster Hall
The El Niño Southern Oscillation (ENSO) is an important interannual climate variability and has significant consequences and impacts on the global biosphere. The responses of vegetation to ENSO are highly heterogeneous and generally depend on the biophysical and biochemical characteristics associated with model plant functional types (PFTs). The modeled biogeochemical variables from Earth System Models (ESMs) are generally grid averages consisting of several PFTs within a gridcell, which will lead to difficulties in directly comparing them with site observations and large uncertainties in studying their responses to large scale climate variability. In this study, we conducted a transient ENSO simulation for the previoustwo decades from 1995 to 2020 using the DOE ACME v0.3 model. It has a comprehensive terrestrial biogeochemistry model that is fully coupled with a sophisticated atmospheric model with an advanced spectral element dynamical core. The model was driven by the NOAA optimum interpolation sea surface temperature (SST) for contemporary years and CFS v2 nine-month seasonal predicted and reconstructed SST for future years till to 2020. We saved the key biogeochemical variables in the subgrid PFT patches and compared them with site observations directly. Furthermore, we studied the biogeochemical responses of terrestrial vegetation to two largest ENSO events (1997–1998 and 2015–2016) for different PFTs. Our results show that it is useful and meaningful to compare and analyze model simulations in subgrid patches. The comparison and analysis not only gave us the details of responses of terrestrial ecosystem to global climate variability under changing climate, but also the insightful view on the model performance on the PFT level.