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This literature review synthesizes the role of soil moisture in regulating carbon sequestration and
greenhouse gas emissions (CS-GHG). Soil moisture directly affects photosynthesis, respiration,
microbial activity, and soil organic matter dynamics, with optimal levels enhancing carbon storage
while extremes, such as drought and flooding, disrupt these processes. A quantitative analysis is
provided on the effects of soil moisture on CS-GHG across various ecosystems and climatic
conditions, highlighting a “PeakandDecline”pattern forCO₂emissionsat 40%water-filledpore space
(WFPS), while CH₄ and N₂O emissions peak at higher levels (60–80% and around 80% WFPS,
respectively). The review also examines ecosystem models, discussing how soil moisture dynamics
are incorporated to simulate photosynthesis, microbial activity, and nutrient cycling. Sustainable soil
moisture management practices, including conservation agriculture, agroforestry, and optimized
watermanagement, prove effective in enhancing carbon sequestration andmitigatingGHGemissions
by maintaining ideal soil moisture levels. The review further emphasizes the importance of advancing
multiscale observations and feedbackmodeling through high-resolution remote sensing and ground-
based data integration, as well as hybrid modeling frameworks. The interactive model-experiment
framework emerges as a promising approach for linking experimental data with model refinement,
enabling continuous improvement of CS-GHG predictions. From a policy perspective, shifting focus
from short-term agricultural productivity to long-term carbon sequestration is crucial. Achieving this
shift will require financial incentives, robust monitoring systems, and collaboration among
stakeholders to ensure sustainable practices effectively contribute to climate mitigation goals.

Ecosystem carbon sequestration and greenhouse gas emissions (CS-GHG)
are complex and crucial aspects of climate change mitigation. These pri-
marily involve two interconnected processes: carbon sequestration and the
dynamic interplay in the emissions of nitrous oxide (N2O) and methane
(CH4)

1,2. Carbon sequestration, known for its cost-efficiency and natural
approach, not only addresses global warming3 but also improves soil
fertility4, enhances water retention5, and increases agricultural
productivity6,7. While carbon sequestration effectively reduces atmospheric
CO2 levels through storage in land-based ecosystems such as forests,
grasslands, wetlands, and agricultural lands8–10, it can inadvertently lead to
increased emissions of N2O and CH4, gases with higher global warming

potentials than CO2
11,12. For example, the application of nitrogen fertilizers

in afforestation projects can enhance soil carbon storage but also stimulate
nitrification and denitrification processes that release N2O

13. Similarly,
efforts to enhance carbon sequestration bywetlands can lead towaterlogged
conditions, creating anaerobic environments ideal formethanogenesis, thus
increasing CH4 emissions14. Recognizing carbon sequestration's effective-
ness in reducing CO2 levels and its potential impact on GHGdynamics, the
Intergovernmental Panel on Climate Change (IPCC) acknowledges the
importance of carbon sequestration in soils and the relevance of managing
N2O and CH4 emissions as integral components of climate change miti-
gation strategies15.
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Various factors influenceCS-GHG, including soil andvegetation types,
climate factors, and human management practices such as irrigation and
fertilization16–18. Among these factors, the amount of water available in soil
impacts plant growth, microbial activity, and soil organic matter, all of
which play crucial roles in determining the rate and efficiency of CS-
GHG19–21. Model-based studies have also found that the variability in global
modeled land carbon uptake is chiefly driven by the effects of temperature
and vapor pressure deficit, both of which are modulated by soil moisture22.
The impact of soil moisture on CS-GHG is more often analyzed as a part of
multiple environmental variables than stand-alone, andmost experimental
data are derived from site-specific studies, lacking comprehensive analysis.
There is also a significant need to understand how extreme weather events
like droughts and flooding impact CS-GHG dynamics in different regions
and to better understand soil moisture thresholds for CS-GHG. Addition-
ally, it is crucial to evaluate how various models simulate the effects of soil
moisture on CS-GHG to improve prediction accuracy and guide future
research.

The primary objective of this literature review is to synthesize the
current state of knowledge on the interactions between soil moisture and
CS-GHG. This review seeks to elucidate the intricate relationships between
soil moisture, microbial activity, plant physiology, and soil organic matter
dynamics, as well as to identify the critical thresholds andmechanisms that
govern these processes across diverse ecosystems. To achieve this goal, the
review aims to: 1) provide an overview of key mechanisms involved in CS-
GHG and examine the impacts of soil moisture on these processes; 2)
explore the patterns of CO2, CH4, and N2O emissions in response to soil
moisture variations, identifying the specific conditions that lead to peak
emissions and the implications for climate change mitigation; 3) explore
how sustainable soil moisture-related land management practices can
enhance carbon sequestration and reduceGHGemissions, emphasizing the

implementation of techniques like conservation agriculture, agroforestry,
and optimized water management, and 4) highlight the importance of
integrating soil moisture considerations into climatemitigation policies and
outline future research directions to address knowledge gaps and improve
the modeling of soil moisture-carbon dynamics. By reviewing the literature
on soil moisture and CS-GHG interactions, this review aims to provide
valuable insights for researchers, practitioners, andpolicymakersworking to
develop effective strategies for enhancing terrestrial carbon storage and
mitigating climate change.

Mechanisms of soil moisture influence on carbon
sequestration and greenhouse gas emissions
Soil moisture influences CS-GHG through three key mechanisms (Fig. 1):
plant photosynthesis and respiration, soilmicrobial activity, and soil organic
matter decomposition and stabilization. Thesemechanisms are not isolated
but are interdependent, each influencing and being influenced by the
others23. Soil moisture, for instance, affects plant health and photosynthesis
rates, which in turn impact soil microbial communities through root exu-
dates and litter inputs24. Microbial activity influences the decomposition of
organic matter, altering soil structure and nutrient availability, which
feedback into plant growth and soil moisture dynamics25.

Plant photosynthesis and respiration
Soilmoisture is a critical factor in regulatingphotosynthesis, and insufficient
soil moisture has been observed to limit plant photosynthesis globally26.
Variability in soil moisture accounts for approximately 90% of the inter-
annual variability in global land carbonuptake,mainly through its influence
on plant carbon assimilation22. In dryland regions like central Asia, soil
moisture promotes photosynthesis in up to 94% of vegetation areas, with its
effects surpassing those of vapor pressure deficit in 74% of these areas,

Fig. 1 | Conceptual diagram: the role of soilmoisture in carbon sequestration and
greenhouse gas emissions. In the right yellow box, white arrows represent soil
moisture, yellow arrows indicate CO2 absorption during photosynthesis, red arrows
denote CO2 release during autotrophic respiration, and blue arrows show water
transport from soil to plants through plant hydraulics. The left green box includes
light green arrows for N2O and CH4 release under anaerobic conditions, and dark

green arrows for methane oxidation and nitrification to N2O under aerobic condi-
tions. The middle purple box features purple arrows illustrating CO2 production
through decomposition and stabilization. The diagram illustrates how soil moisture
participates in various CS-GHG processes, indicating interrelated feedback
mechanisms within terrestrial ecosystems.
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especially in croplands, grasslands, and forests27. Globally, soil moisture
constraints are estimated to reduce annual photosynthesis by around 15%
and intensify interannual variability by over 100% across 25% of vegetated
land28. Increased precipitation in desert steppes has been shown to enhance
net photosynthetic rates by 159.5% and 178.9% for C3 and C4 plants,
respectively, underscoring soil moisture’s role in promoting photosynthetic
activity29.

Soil moisture influences respiration in both plants and soil organisms,
affecting autotrophic respiration (Ra) and heterotrophic respiration (Rh)
differently. Studies show that Ra, which includes respiration from all plant
tissues (roots, stems, and leaves) andassociatedorganisms, is generallymore
sensitive to soil moisture fluctuations than Rh, which is driven bymicrobial
decomposition of organic matter. For example, drought reduced Ra con-
tributions to total soil respiration from 33% to 16% in a subtropical forest30

and from 66% to 35% in dry grasslands31, highlighting Ra’s sensitivity to
water limitations. In contrast, Rh remained relatively stable, decreasing by
only 21% under drought compared to a 26.8% reduction in Ra32. Moisture
thresholds further underscore this sensitivity in Mediterranean forests, Ra
decouples from temperature below a 17% soil moisture threshold, while Rh
is moisture-controlled below 20%33. Moisture pulses also reveal differential
responses, with Rh increasing over sixfold within hours of rainfall, while Ra
takes days to respond33.

Adding to the complexity, the inclusion of plant hydraulics into our
understanding of carbon sequestration mechanisms provides a critical
dimension34. Plant hydraulics, the systemplants use to transport water from
the soil through their roots and stems to the leaves, is integral to photo-
synthesis and overall plant health35. Adequate soil moisture ensures that
plants have sufficient water tomaintain this transport, which is essential for
optimal photosynthetic performance36. When plants efficiently photo-
synthesize, they absorb more CO2 and convert it into organic carbon, thus
contributing to carbon sequestration. Conversely, under conditions ofwater
stress, hydraulic failure can occur, reducing photosynthetic efficiency and
consequently carbon assimilation.

Soil microbial activity
Soil moisture critically influences soil microbial activity by affecting the
habitat conditions ofmicroorganisms such as bacteria, fungi, and archaea37.
Microbial processes are enhanced at optimal moisture levels, with studies
showing that microbial activity at 100%water holding capacity (WHC) can
be up to 41%higher than at 60%WHC38. Soilmoisture impacts not only the
overall activity but also the enzyme activities, distribution, and function of
specific microbial groups39. It determines the balance between aerobic and
anaerobic conditions, thereby influencing which microorganisms
dominate40.

The influence of soil moisture on microbial activity directly affects
carbon sequestration. Microorganisms decompose organic matter and
convert it into stable soil carbon forms through enzymatic reactions37.
Under optimal, moist, and aerobic conditions, microbes efficiently break
down organic matter, with a portion being stabilized through association
with soil minerals, contributing to long-term carbon storage. Fungi, for
example, assimilate carbon into their hyphae, and their growth is sig-
nificantly influenced by soil moisture levels41. Additionally, microbial
autotrophy including autotrophic bacteria and phototrophic protists fixes
atmospheric CO₂ into soil carbon42. Soils with optimal moisture, such as
paddy soils, support a higher proportion of these organisms, resulting in
higher CO₂ fixation rates compared to drier upland and forest soils43.

Soil moisture also impacts GHG emissions by influencing the
metabolic pathways of soil microorganisms. In well-aerated soils with
optimal moisture, aerobic microbial activity predominates, leading pri-
marily to CO₂ production44. However, in waterlogged or anaerobic soils,
microbial pathways shift toward anaerobic processes. Denitrifying bac-
teria become more active under these conditions, producing increased
levels of N₂O, while methanogenic archaea generate CH₄45. Soil moisture
affects the activity of methanotrophic bacteria that oxidize CH₄ into CO₂,
mitigating methane emissions. This activity is especially crucial in

environments like wetlands and rice paddies, where methane production
is prevalent46,47.

Soil organic matter decomposition and stabilization
Building upon the role of soil microbial activity discussed in Section 2.2, soil
moisture further influences CS-GHG through its impact on soil organic
matter (SOM) decomposition and stabilization. Adequate moisture
enhances microbial metabolism and enzyme activity, leading to increased
breakdown of organicmatter. For instance, CO₂ production can be 31–40%
higher at 65% WHC compared to 45% WHC, indicating that moisture
availability significantly affects SOM mineralization rates48. Soil moisture
also influences carbon stabilization by promoting the formation ofmineral-
associated organic matter; in wetter climates, greater root growth and
interaction of organic inputs with soil minerals enhance carbon
stabilization49.

The balance between SOM decomposition and stabilization is crucial
for carbon sequestration. While decomposition releases CO₂, the stabili-
zation of organic matter within soil aggregates or bound to minerals con-
tributes to long-term carbon storage. Soil moisture facilitates the formation
of stable soil aggregates through the swelling of clay minerals and cohesion
of soil particles, encapsulating organicmatter and protecting it from further
decomposition50,51. Changes in moisture regimes can significantly impact
carbon stabilization in soils, with a tipping point observed where pre-
cipitation equals evaporation49.

SOM decomposition and stabilization processes influenced by soil
moisture have significant implications for GHG emissions. Increased
decomposition rates under optimal moisture conditions lead to higher CO₂
emissions due to enhanced microbial respiration. Excessive moisture can
create anaerobic conditions, shifting microbial activity towards methano-
genesis and resulting in increased CH₄ production52. Soil aggregates sig-
nificantly influence GHG dynamics, particularly CH4 and N2O emissions,
by modulating soil gas diffusion and water availability53,54.

The interplay of soil moisture and other key factors regulating
CS-GHG dynamics
Soil moisture interacts with various other soil properties—such as tem-
perature, texture, type, pH, carbon-to-nitrogen (C/N) ratio, bulk density,
and nitrogen input—to regulate the complex dynamics of CS-GHG. Soil
temperature, in particular, has a profound influence on microbial activity
and organic matter decomposition, both of which drive CO₂ and N₂O
fluxes55,56. In well-moistened soils, higher temperatures can accelerate
microbial decomposition, leading to increased carbon mineralization and
subsequent carbon losses57. However, in dry soils, microbial activity may
decrease despite elevated temperatures. For example, soil microbial
respiration in global drylands often adapts to the ambient thermal regime,
reducing the expected increase in CO₂ emissions58,59. These findings suggest
that temperature-driven increases in soil respiration aremodulated by other
factors, with soil moisture playing a critical role in shaping how microbial
communities respond to warming. Soil texture also governs the interaction
between temperature and moisture, as coarse-textured soils (e.g., sandy
soils) typically exhibit faster drainage, which limits the water availability for
microbial processes60. In contrast, fine-textured soils (e.g., clay soils) retain
moisture, allowing temperature andmoisture to co-regulate carbon cycling
processes more effectively60. Additionally, the C/N ratio and nitrogen input
are critical factors that shape microbial nutrient availability and nitrogen
cycling, significantly impactingN₂Oemissions61. In organic soils frommid-
latitude regions, N₂O emissions follow a Gaussian distribution with respect
to theC/N ratio, peaking at values around 18–1962. Research has shown that
the C/N ratio alone can explain up to 36% of the variability in N₂O fluxes.
However, when other factors—such as mineral nitrogen input and water
table depth—are considered, the explanatory power increases to 75%63. To
further the complexity, soil pH has been used as an integrated proxy of land
use change, parentmaterial and climate to determine the site-specific effects
of land management strategies on soil organic accumulation, thus CS-
GHG64. The combination of these factors—temperature, moisture, soil
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texture, pH, and nutrient availability—collectively influences CS-GHG
dynamics. Among them, soil moisture, as one of the most rapidly changing
and sensitive factors65, becomes the pivotal element in determining the
overall outcome of CS-GHG emissions66.

Quantitative impact of soil moisture variability on car-
bon sequestration and greenhouse gas emissions
Influence of soil moisture on carbon sequestration
Table 1 presents the impact of soil moisture on carbon sequestration across
various global locations and ecosystems. Generally, there are three distinct
scenarios: lower soil moisture reducing carbon sequestration, higher soil
moisture enhancing carbon sequestration, and higher soil moisture redu-
cing carbon sequestration.

Lower soil moisture often results from drought conditions, which
significantly impact carbon sequestration. On a global scale, data from four
Earth system models indicate that drying soil moisture trends reduce the
current land carbon sink by about 2–3 Gt C per year67. This effect is parti-
cularly pronounced in arid regions, where drought conditions limit the
carbon sequestration potential68,69. For instance, in Sudan’s sparse savanna,
rainy season carbon uptake averages 152 mmol CO₂ m−2 day−1, while dry
season uptake drops to just 14.7 mmol CO₂ m−2 day−1, a nearly tenfold
difference that significantly reduces the region’s annual carbon sink capa-
city. Similarly, in the cold Pan-Arctic area, decreased soil moisture during
summer limits peak plant productivity, with gross primary production
(GPP) declining by up to 27% as soilmoisture decreases from60% to 31%70.
In moisture-rich ecosystems like the Amazon rainforest, drought can
severely impact carbon sequestration, causing significant tree mortality,
reduced carbonuptake, and leading to a net biomass carbon loss of 1.2 to 1.6
Pg out of the 18 Pg it processes annually71. In China’s humid and warm
eastern regions72, national and regional net ecosystem productivity
anomalies were closely correlated with drought index, highlighting the
drought impact on carbon dynamics. In subtropical forests73, drought led to
soil carbon storage declines of up to 12.2%, reflecting significant reductions
in carbon sequestration under moisture stress.

In some regions, inherently high soil moisture leads to enhanced car-
bon sequestration. For instance, in peatlands and wetlands, high soil
moisture content creates low-oxygen conditions that slow down decom-
position, resulting in effective carbon storage74. Although carbon storage is
expected to decline under warming and drying in boreal peatlands75,
declining soil moisture alone does not seem to necessarily cause reduced
carbon storage76. In semi-arid regions like Australia, significant carbon sink
activity has been observed following heavy rainfall, with an increase in

annual rainfall of about 350mm leading to an additional carbon absorption
of approximately 0.4 ± 0.2 Pg C by Australia's terrestrial ecosystems77.
Similarly, higher soil moisture in areas like the Qinghai-Tibetan Plateau,
Xinjiang, and Northwest China has been shown to promote carbon
sink activity, contributing to net ecosystem productivity increases of up to
3.0 g C m² per year78.

However, high soil moisture can also reduce carbon sequestration
under certain conditions. In ecosystems that have experienced prolonged
dry periods, a sudden increase in soil moisture due to rainfall can lead to
rapid carbon loss79. This occurs because the added moisture reactivates
previously dormantmicroorganisms in the soil, causing them to releaseCO₂
as they metabolize organic material80. Additionally, increased moisture
enhances the diffusion of organicmatter, which, in combinationwithhigher
microbial activity, contributes to a spike in CO₂ emissions80. Additionally,
elevated CO2 concentrations can exacerbate this effect81. High CO2 levels
typically promote plant growth, leading to more extensive root systems82.
Under highmoisture conditions, increased root respiration generates more
CO2, thereby reducing net carbon sequestration83,84.

Hot spots and hot moments in soil moisture thresholds for GHG
emissions
Table 2 provides a detailed analysis of the correlation between soil moisture
(measured as water-filled pore space, WFPS) and GHG emissions across
diverse locations and landcover types. The correlation patterns for CO2 are
consistently described as "Peak and Decline" (PD), indicating that CO2

emissions tend to reach a peak at a specific soil moisture level before
declining. In contrast, CH4 and N2O correlations exhibit more variability,
with patterns described as "Positive" (P), "Peak and Decline" (PD), and
"Trough and Rise" (TR). Table 2 also identifies the WFPS thresholds at
which peak emissions occur, revealing that CO2 emissions typically peak at
around 40%WFPS. Meanwhile, CH4 and N2O emissions generally peak at
higher soil moisture levels, with CH4 peaking between 60% and 80%WFPS
and N2O peaking at approximately 80% WFPS. The consistent "Peak and
Decline" pattern observed for CO2 emissions across various landcovers
suggests that there is an optimal soilmoisture level formicrobial activity and
root respiration, beyond which emissions decline due to either excess
moisture limiting oxygen availability or insufficient moisture restricting
microbial processes. This optimal level is typically around 40% WFPS,
indicating a critical threshold for CO2 emissions regulation. For instance, in
European landcover categories21, CO2 emissions peak at around 40%WFPS
before declining. In contrast, CH4 and N2O emissions show significant
variability in response to soilmoisture.CH4 emissions tend topeak at higher

Table 1 | Influence of soil moisture on carbon sequestration for different location, landcover and conditions

Location Climate/Landcover HSM-ECS LSM-RCS HSM-RCS Conditions Ref

Global N/A √ Drought 26,67

Peatlands √ Wetland 74

Amazon Tropical rainforest √ Drought 71

India Forest √ After rainfall 79

Germany Cropland √ Elevated CO2 81

Australia Dryland vegetation √ After rainfall 77

Pan-arctic Shrub wetlands √ Drought 70

Africa Savanna √ Drought 68,69

China Desert √ After rainfall 80

Areas with poor water conditions √ After rainfall 78

Humid and warm eastern regions √ Drought 72

Subtropical forest √ Drought 73

HSM-ECS: Higher soil moisture enhanced carbon sequestration.
LSM-RCS: Lower soil moisture reduced carbon sequestration.
HSM-RCS: Higher soil moisture reduced carbon sequestration.
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soil moisture levels, ranging from 60% to 80%WFPS, which aligns with the
anaerobic conditions favorable formethaneproduction85. For example,CH4

emissions inEuropeanwetlands peak at 95%WFPS21, and inChinese paddy
fields, they peak at 99% WFPS86. Similarly, N2O emissions peak at even
higher moisture levels, around 80% WFPS, reflecting the conditions that
promote denitrification processes. This is evident in the European forest
landcover category, where N2O emissions peak at around 80% WFPS21.
Other landcover types also exhibit similar trends. For example, in UK
croplands, N2O emissions peak at around 75%WFPS83. In Danish forests,
N2O emissions peak at 60% WFPS, while CH4 emissions show a positive
correlation at 80% soil water content87. For grasslands experiencing freeze-
thaw cycles in China, CO2 and N2O emissions both peak at around 50%
WFPS88.

The observed variability in CH4 and N2O emission patterns under-
scores the complex interactions between soil moisture and microbial pro-
cesses responsible for GHG production.While CO2 emissions demonstrate
a more predictable response to soil moisture changes, CH4 and N2O
emissions are influenced by a broader range of soil moisture conditions,
highlighting the need for targeted soil moisture management strategies to
mitigate these emissions. Overall, managing soil moisture to maintain
optimal conditions for microbial activity can significantly impact the reg-
ulation of GHG emissions and contribute to climate change mitigation
efforts.

The impact of free-thaw and drought-rewetting events on GHG
emissions
Freeze-thawcycles (FTCs) anddrought-rewetting events cause abrupt shifts
in soil physical, chemical, and biological processes, significantly altering
GHG emissions. FTCs can increase GHG emissions by disrupting soil
aggregates, releasing dissolved organic carbon, and causing microbial cell
rupture, which releases carbon and nitrogen89. This process can cause CO₂
emissions to account for about 45% of annual totals and N₂O emissions to
originate 50–70% from these cycles, with emissions increasing by up to 1.7
times for CO₂ and up to 5.8 times for N₂O90, especially in agricultural soils
where perennial bioenergy crops such asmiscanthus andwillow are grown,
due to accelerated nitrogen losses91. Ecosystems respond variably to FTCs,
for example, in wetland ecosystems, flooding during FTCsmay reduce CO₂
emissions by 65% and CH₄ emissions by 37%92. Alpine forests tend to show
increased CO₂ emissions during thawing93, primarily because soil

respiration during FTCs averages a fourfold increase compared to non-
FTCs. In temperate grasslands, FTCs have varying impacts on GHG
emissions depending on soil properties and land cover: meadow steppe,
marshland, and typical steppe soils exhibit increased N₂O emissions,
whereas arid steppe soils show minimal response94. While FTCs primarily
disrupt soil structure and enhance microbial activity, rewetting events
trigger rapid shifts in soil moisture, which similarly affect the carbon and
nitrogen cycling. During droughts, microbial activity slows, leading to
temporary carbon accumulation95. However, rewetting triggers a sharp
increase in microbial respiration, resulting in large CO₂ emission bursts as
accumulated organic matter is rapidly decomposed96,97. A meta-analysis of
global drying and rewetting cycles across all ecosystems showed that these
cycles increase CO₂ emissions by 35.7% compared to constant soil moisture
conditions, while having no significant effect on N₂O emissions98. In con-
trast, when wetlands are rewetted and the water table rises near the surface
(within –30 cm to –5 cm of the surface), GHG emissions are often reduced
to near zero due to waterlogged conditions slowing down microbial
activity99.

In summary, freeze-thawcycles anddrought-rewetting events typically
increaseCO₂ andN₂Oemissions by disrupting soil structure and enhancing
microbial activity, especially in agricultural soils. Rewetting triggers a surge
in CO₂ emissions as accumulated organic matter is rapidly decomposed.
However, in wetlands, rising water tables tend to reduce GHG emissions by
slowing down microbial activity.

Carbon sequestration and greenhouse gas emission
models in the context of soil moisture dynamics
Ecosystem models offer detailed simulations of ecosystem processes,
making them valuable for understanding the intricate dynamics of carbon,
nutrient, energy, and water cycles100–109. Table 3 provides a detailed com-
parison of how various state-of-science ecosystem models incorporate soil
moisture's influence on the CS-GHG.

In carbon sequestration, different ecosystem models incorporate soil
moisture’s role in CS with varying emphasis on specific mechanisms. For
example, the Common Land Model (CoLM) focuses on stomatal con-
ductance, a vital process for photosynthesis, where water availability reg-
ulates the opening and closing of plant stomata, directly impacting carbon
uptake by vegetation109. Similarly, Biome-BGC emphasizes drought stress
levels, which impact net primary productivity by influencing plant growth

Table 2 | Soil moisture and GHG emission correlations and thresholds

Landcover Location SM-GHG Emission Correlation GHG Peak Emission WFPS Thresholds (%) Ref.

CO2 CH4 N2O CO2 CH4 N2O

Cropland European PD PD P 40% 60% 80% 21

European N/A N/A P N/A N/A 75% 83

North America PD P P 40% 80% 80% 84

USA N/A N/A P N/A N/A >80% 185

USA N/A PD PD N/A 72–94% 63–85% 186

USA N/A N/A P N/A N/A 60–90% 187

North America PD N/A N/A 60% N/A N/A 188

East Asia N/A P PD N/A 99% 78–85% 86

Forest European PD P P 40% 80% 80% 21

North America N/A N/A PD N/A N/A 60% 189

East Asia PD TR PD 70–90% 50–70% 70–90% 190

Grassland European PD PD P 40% 60% 80% 21

East Asia N/A N/A P N/A N/A >73% 191

East Asia PD N/A PD 50 % N/A 50 % 88

Wetland European PD P P 40% 95% 80% 21

WFPS denotesWater-filled pore space,PPositive,PDPeak and decline, TR Trough andRise. Due to the variation inmaximumWFPS settings across different experiments, when the correlation is listed as
"Positive," the value for GHG Peak Emission WFPS Thresholds (%) represents the maximumWFPS observed in that particular experiment.
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and carbon storage potential, especially under changingwater conditions100.
Other models, such as Organizing Carbon and Hydrology in Dynamic
Ecosystems (ORCHIDEE)103 and Lund-Potsdam-Jena General Ecosystem
Simulator (LPJ-GUESS)104, go further by embedding water stress into car-
bon allocation processes, thereby affecting carbon dynamics within the
ecosystem. Denitrification-Decomposition (DNDC)101 and Dynamic Land
Ecosystem Model (DLEM)107,108 add layers of complexity by linking soil
moisture to microbial activity and nutrient cycling, which are critical for
long-term carbon storage in soils.

When addressing GHG emissions, models differ in the extent and
processes simulated. Models such as Biome-BGC100 and BEPS-TerrainLab
V2.0110 only simulate CO₂ emissions. In contrast, models like DLEM,
DNDC, Community Land Model Version 5 (CLM5), and Land Model of
U.S.Department ofEnergyEnergyExascaleEarth SystemModel (ELM) can
also simulate CH₄ and N₂O emissions. Additionally, some models have
expanded CH₄ simulation capabilities by integrating peatland schemes,
such as ORCHIDEE-PEAT111 and LPJ-GUESS version 4.1112.

For CO₂, models such as Biome-BGC and BEPS-TerrainLab V2.0
represent the role of soil moisture in GHG emissions indirectly, focusing
primarily on plant-mediated CO₂ fluxes. In contrast, models like CoLM,
DLEM, CLM5 and ELM take a more comprehensive approach by simu-
lating CO₂ release not only from plant photosynthesis, soil respiration, and
microbial decomposition but also by incorporating fire susceptibility
influenced by soil moisture, where lowmoisture levels increase fire risk and
subsequently CO₂ emissions108,111,112,117,118. For CH4 and N2O, DLEM links
soil moisture to CH₄ emissions by modeling anaerobic methanogenesis

under wet conditions and CH₄ oxidation in drier soils107,108. DNDC builds
on this approach by tracking daily soil moisture levels, which directly affect
microbial respiration and redox conditions essential for N₂O and N₂
emissions, using the “anaerobic balloon” concept101. CLM5 and ELM cap-
ture additional complexities bymodeling the anaerobic processes necessary
for CH₄ and N₂O production, especially in wetlands where high soil
moisture creates conducive environments for methanogenesis106.

In sum, soilmoisture serves as a key regulator in balancingCS andCO₂
emissions, indirectly influencing ecosystem carbon dynamics through its
effects on plant growth, stomatal conductance, and microbial decomposi-
tion. However, when it comes to CH₄ and N₂O, soil moisture plays a direct
role, actively controlling emissions by influencing the soil’s redox envir-
onment and microbial activity. In anaerobic conditions, especially in wet-
lands or saturated soils, soil moisture promotes methanogenesis, leading to
CH₄ emissions,while alsodrivingN₂Oproduction throughnitrification and
denitrification processes.

Sustainable soil moisture-related land management
practices
Enhancing carbon sequestration
Conservation Agriculture (CA) is a recommended sustainable land man-
agement practice for enhancing carbon sequestration113. CA involves leav-
ing crop stubble/leaf litters on the soil surface to preserve soil moisture,
reduce erosion, and improve soil structure113. By incorporating legumes into
the cropping system, CA helps sequester carbon by protecting soil organic
carbon in aggregates and adding organic carbon to deeper soil layers114.

Table 3 | Comparative roles of soilmoisture in carbon sequestration andgreenhousegas emissions across selected ecosystem
models

Model Role of soil moisture in Refs

Carbon sequestration Greenhouse gas emissions

Biome-BGC • Impacts drought stress levels, which in turn affect net primary
productivity and carbon uptake.

• Indirectly represented through its impact on plant-mediated
CO₂ fluxes.

100

BEPS-
TerrainLab V2.0

• Affects plant photosynthesis and microbial decomposition 110

CoLM • Affects stomatal conductance, which in turn influences
photosynthesis and carbon uptake.

• Impacts CO₂ release through both autotrophic (plant-related) and
heterotrophic (microbial-related) respiration rates.

• Regulates CO₂ emissions from nutrient mineralization and
decomposition processes, as controlled by soil moisture levels.

• The vegetation dynamics component includes fire
parameterizations that respond to soil moisture and litter
availability. Reduced soil moisture elevates fire occurrence
probabilities, resulting in CO₂ release.

109

ORCHIDEE • Incorporates water stress factors into photosynthesis
parameterizations

• Influences the allocation of carbon to different plant tissues

103

LPJ-GUESS • Influences photosynthesis, carbon allocation and vegetation
dynamics

104

DLEM • Influences plant photosynthesis and respiration, affecting
carbon uptake and storage in biomass.

• Acts as a connecting variable among model components,
impacting overall carbon cycling processes in the ecosystem.

• Modulates CO₂ release through plant photosynthesis, soil
respiration, and microbial decomposition.

• Affects CH₄ dynamics by promoting methanogenesis in saturated,
anaerobic conditions andenhancingCH₄oxidation in drier, aerobic
soils.

• Influences N₂O emissions by facilitating nitrification under optimal
aerobic conditions and enhancing denitrification in high-moisture,
anaerobic environments.

107,108

DNDC • Tracks physiological processes, such as water stress and
nutrient uptake.

• Track daily soil moisture content, which directly affects respiration
rates and, consequently, CO₂ fluxes.

• Simulates CH₄ fluxes under varying hydrological conditions.
• Simulates N₂O and N₂ emissions based on soil moisture and redox
potential, influenced by the ‘anaerobic balloon’ concept that
models simultaneous aerobic and anaerobic microsites.

101

CLM5 • By maintaining healthy vegetation through improved plant
hydraulics, soil moisture directly and indirectly supports carbon
sequestration and storage in terrestrial ecosystems.

• Influences plant photosynthesis, soil respiration, microbial
decomposition and fire susceptibility, thereby affecting CO₂
emissions through both vegetation stress and combustion
processes.

• High soil moisture levels in wetlands create anaerobic conditions
essential for CH₄ production

• Affects nitrification and denitrification processes, facilitating N₂O
production and emissions

105

ELM 106

CoLM The Common Land Model, ORCHIDEE Organizing Carbon and Hydrology in Dynamic Ecosystems, LPJ-GUESS Lund-Potsdam-Jena General Ecosystem Simulator,
DLEM Dynamic Land Ecosystem Model, DNDC Denitrification-Decomposition, CLM5 Community Land Model Version 5, ELM Land Model of U.S. Department of Energy Energy Exascale Earth
System Model.
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Additionally, CA practices not only increase soil productivity and crop
yields but also contribute to reverting soil degradation and improving input
use efficiency. Therefore, promoting location-specificCApractices is crucial
for sustainable soil management and enhancing carbon sequestration.
Cover cropping and mulching, as part of CA practices, are essential sus-
tainable soil moisture-related landmanagement practices that play a crucial
role in enhancing carbon sequestration115. Cover cropping helps to improve
soil health by increasing organicmatter content, which in turn enhances soil
carbon sequestration potential116. Mulching, on the other hand, aids in
reducing soil erosion, maintaining soil moisture levels, and promoting the
decomposition of organic matter, all of which contribute to increased car-
bon sequestration in the soil117. These practices, alongwith other techniques
like conservation tillage, nutrient management, and crop residue manage-
ment, are vital for maximizing carbon sequestration in terrestrial ecosys-
tems, mitigating greenhouse gas emissions, and promoting sustainable
agriculture118.

Agroforestry practices play a crucial role in sustainable soil moisture-
related land management for enhancing carbon sequestration119. These
practices involve the integration of trees and shrubs into agricultural
landscapes, promoting soil health and carbon storage120. Agroforestry sys-
tems contribute to carbon sequestration by increasing organicmatter inputs
to the soil, enhancing soil structure, and reducing erosion119,120. By com-
bining agriculture with forestry, agroforestry helps maintain soil moisture
levels, which are essential for promoting plant growth and carbon
sequestration121. Additionally, agroforestry practices offer multiple benefits
such as improved biodiversity, increased resilience to climate change, and
sustainable land use. Therefore, implementing agroforestry techniques can
be a valuable strategy for enhancing carbon sequestration while promoting
sustainable soil moisture-related land management.

The application of organic amendments, such as compost andmanure,
can improve soil moisture retention and increase carbon sequestration by
enhancing soil structure, organic matter content, and WHC122. Aerosols,
such as mineral dust and black carbon, can influence soil moisture and
carbon sequestration by affecting the Earth's radiation balance and altering
precipitation patterns123. For instance, mineral dust aerosols can have a
cooling effect on theEarth's surface, potentially reducing evapotranspiration
and altering soil moisture dynamics124. Black carbon aerosols, on the other
hand, can have a warming effect, potentially increasing evapotranspiration
and reducing soil moisture125.

Reducing GHG emission
Sustainable soil moisture-related land management practices are essential
for reducing GHG emissions, particularly in agricultural systems like rice
paddies, which are significant sources of CH4. One effective practice is
improved water management in rice systems, such as alternate wetting and
drying (AWD)126. AWD involves periodically draining the rice fields rather
than keeping them continuously flooded. This practice reduces CH4

emissions by limiting the anaerobic conditions that favor methanogenic
bacteria responsible for methane production. Studies have shown that
AWD can cut CH4 emissions by up to 50% compared to traditional con-
tinuous flooding methods127. In addition to AWD, other sustainable prac-
tices include optimizing irrigation scheduling to match crop water needs
more precisely, thereby avoiding excessive water application that leads to
anaerobic soil conditions128. Implementing water-saving technologies such
as drip irrigation or controlled flooding can further enhance water use
efficiency and reduce GHG emissions129. Moreover, incorporating organic
amendments like biochar into the soil can improve soil structure, increase
water retention, and reduce N2O emissions by promoting more efficient
nutrient cycling and reducing the need for synthetic fertilizers130. Collec-
tively, these practices not only mitigate GHG emissions but also improve
water use efficiency, enhance soil health, and boost crop productivity.
Sustainable water management in rice systems exemplifies how targeted
land management practices can address both environmental and agri-
cultural challenges, contributing to more resilient and climate-smart agri-
cultural systems.

Challenges and future directions
Enhancing CS-GHGmonitoring with high-resolution remote
sensing and ground-based observations
High-resolution data on water and carbon are crucial for CS-GHG. Syn-
thetic Aperture Radar (SAR) has demonstrated sensitivity to surface soil
moisture131, and when combined with LiDAR, it has become a promising
alternative to traditional field data campaigns132. For soil moisture, SAR
platforms like Sentinel-1 and -2, utilizing multi-orbit time series analysis
and incidence angle normalization, and combining various downscaling
algorithms, achieve spatial resolutions enabling precise monitoring of soil
moisture at scales of 1 km133, 500m134, and even 100m135. LiDAR-derived
digital elevation models, combined with machine learning, enable the
production of high-resolution soil moisture products down to 2 m136. In
specific terrains, such as coastal area, combining LiDAR intensity data with
machine learning can achieve spatial resolutions at the centimeter to deci-
meter scale137. For carbon, LiDAR missions such as GEDI and ICESat-2
deliver detailed forest canopy height data138, allowing ecosystem models to
dramatically improve the spatial resolution of carbon flux estimates—from
0.25° to 0.01°139. This enhanced resolution captures fine-scale forest struc-
tures and disturbances, which are crucial for precise CS-GHG analysis and
modeling. However, these high-resolution datasets often rely on machine
learning, which is constrained by the availability and quality of training
data133,135,136. In soil moisture mapping, while SAR provides frequent tem-
poral updates, its accuracy declines in areas with dense vegetation140.
Similarly, LiDAR’s detailed spatial resolution is offset by limited temporal
coverage, making it challenging to capture fast-changing soil moisture
dynamics effectively141. In carbon flux modeling, although LiDAR excels at
capturing canopy height and overall forest structure, representing critical
below-canopy processes for carbon flux remains difficult, further adding to
the complexity of accurate modeling139.

To address these limitations and fill the gaps in remote sensing, site-
level to watershed-scale observations provide high-quality, continuous
measurements of soil moisture, carbon fluxes, and GHG emissions, which
are essential for validating and complementing remote sensing data.
FLUXNET is a global network of eddy covariance towers that measure
exchanges of carbon dioxide, water vapor, and energy between terrestrial
ecosystems and the atmosphere142. This network offers detailed insights into
ecosystem responses to environmental changes across diverse biomes143.
The DOE Next-Generation Ecosystem Experiments Arctic (NGEE-Arctic;
https://ess.science.energy.gov/ngee-arctic/) and NGEE-Tropics (https://ess.
science.energy.gov/ngee-tropics/) programs focus on improving the repre-
sentation of Arctic and tropical ecosystems in Earth system models by
collecting extensive field observations on plant physiology, soil properties,
and biogeochemical processes under changing environmental
conditions144,145. Additionally, the Spruce and Peatland Responses Under
Changing Environments (SPRUCE; https://mnspruce.ornl.gov/) experi-
ment investigates the effects of elevated temperature and carbon dioxide
levels onpeatland ecosystems. These researches provide critical insights into
the complex interactions and feedback loops between soil water availability,
carbon sequestration, and GHG emissions under shifting environmental
conditions146. Emphasizing these smaller-scale observations underscores
their essential role in validating and complementing remote-sensing data,
enhancing our understanding and modeling of soil moisture and CS-GHG
dynamics across diverse ecosystems. However, significant challenges
remain. Spatial and temporal mismatches between site-level measurements
and remote sensing complicate data integration due to differences in scale,
protocols, and data quality147. Additionally, inconsistencies in instru-
mentation and methodologies across studies introduce variability, further
complicating data synthesis and model validation processes148.

Future research should prioritize enhancing multiscale observational
capabilities by integratinghigh-resolution remote sensingdatawith ground-
based networks. Specifically, this involves expanding the geographical
coverage of observational sites to improve data representation in under-
represented and remote regions149,150. Developing below-ground sensors to
strengthen ground-based observations of below-canopy processes will
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enhance our understanding of ecosystem dynamics150,151. By combining
these enriched ground observations with remote sensing results and
employing data fusion techniques, we can create high-quality datasets with
high spatial and temporal resolution. This comprehensive approach will
address limitations in densely vegetated areas and regions with limited
temporal coverage, ultimately leading to more accurate modeling and
analysis of soil moisture and carbon-greenhouse gas dynamics across var-
ious ecosystems.

Bridging the gaps in modeling soil moisture and CS-GHG
dynamics interaction: challenges and opportunities
Aside from the challenges associated with data, accurately modeling inter-
actions between soilmoisture andCS-GHG remains a significant challenge.
First, carbon dynamics are highly sensitive to water availability152, and the
processes involvedare complex153. Asdiscussed inSection3.2,CH₄ andN₂O
emissions are influenced by a broader range of soil moisture conditions.
Modeling these nonlinear and threshold-based responses is challenging.
Second, soil moisture exhibits significant spatial and temporal variability.
Spatially, it varies across different landscapes due to factors like soil type,
topography, climate, and vegetation cover154. Temporally, soil moisture can
change rapidly due to weather events like rainfall or droughts155. This rapid
and complex spatiotemporal variability makes it challenging for models,
which must balance computational efficiency with the need for detailed
process representation. Third, complex plant-soil interactions pose sig-
nificant modeling challenges. Different plant species and microbial com-
munities respond uniquely to soil moisture changes156. These interactions
are complex; while small-scale model experiments can capture some
aspects, large-scale models require detailed classification of plant functional
types andmicrobial community compositions to accurately represent these
dynamics and their impact on ecosystems.

As reviewed in Section 4, current ecosystem models can capture the
complex feedback between soil moisture and CS-GHG to varying degrees.
However, expanding the representation of these feedback from offline
ecosystem models to an Earth system modeling framework presents addi-
tional challenges. These challenges include achieving accurate representa-
tion of temporal and spatial variability, realistically representing the
interactions between soil moisture dynamics and atmospheric processes
within a fully coupled, real-time framework, and efficiently managing
computational demands157. Additional complexities arise in representing
the legacy effects of droughts, which can alter soil properties by changing its
chemical and physical structure, reducing carbon sequestration (Table 1)
and increasing greenhouse gas emissions158–160. Accurately modeling plant
hydraulic responses and capturing the often-underestimated strength of
land–atmosphere interactions are also essential, as they directly influence
the simulation of energy, moisture, and carbon exchanges161. Moreover, the
influence of human activities, such as irrigation, water extraction, and those
human land management practices discussed in Section 5, which sig-
nificantly affect CS-GHG processes and their climate feedback, is often
underrepresented in ecosystem models and their parent Earth system
models (ESMs)162–164.

To address thesemodeling challenges, recent studies have increasingly
advocated for incorporating key ecological processes into ecosystemmodels
and associated ESMs to enhance process-based representations and the
accuracy and relevance of thesemodels165,166. Integrating advancedmachine
learning algorithms is another promising approach. At the forefront of this
integration are hybrid modeling frameworks, which combine and integrate
machine learning methods into classical process-based models167. For
example, the Knowledge-Guided Machine Learning (KGML) framework
combines process-based models with machine learning techniques to
improve carbon cycle quantification, revealing 86%more spatial detail than
conventional methods168. Similarly, the KGML-DA framework improves
carbon cycle predictions, reducingRMSEbyup to 30.5% for corn and24.6%
for soybean, across three agricultural sites and 627 counties in the U.S.
Midwest, using data from 2000 to 2020169. Hybrid models that integrate
machine learning into ESMs combine the predictive power of machine

learning with the interpretability of process-based models for improved
accuracy170. Recent advancements, such as Bayesian networks and data
assimilation techniques, enable these models to dynamically update pre-
dictions with new data and manage uncertainty effectively171.

Beyond challenges inherent in themodels themselves, obstacles arise in
integrating models with observational data due to differences in spatio-
temporal coverage, such as models providing high-frequency carbon flux
outputs while MODIS GPP is available only every 16 days. Additional
challenges include variations in data scale, resolution, and inconsistencies in
data formats and quality148. Moreover, uncertainties in observational data
can impact the validation and calibration processes, leading to less reliable
predictions172. The Department of Energy's iterative Model-Experiment
(ModEx; https://ess.science.energy.gov/modex/) approach offers a valuable
framework for bridging the gaps between observation and modeling. This
iterative process emphasizes a synergistic cycle where observational and
experimental data inform and refine models, while models guide and
prioritize future data collection efforts. By applying the ModEx concept to
integrate high-resolution remote sensing datawith expanded ground-based
observations (as discussed in Section 6.1), researchers can enhance the
predictive capabilities of models related to soil moisture and CS-GHG
dynamics. This continuous feedback loop enables the identification of cri-
tical variables, processes, and locations that warrant further investigation,
thereby enhancing the efficiency of data acquisition and informing targeted
model development159–163.

Policiesand incentives for soilmoisturemanagement toenhance
CS and reduce GHG emissions
Currentpolicies and incentives aimed at optimizing soilmoisture forCSand
reducing GHG emissions face several key challenges. Onemajor issue is the
misalignmentbetween landusepolicies and climate goals, particularly in the
agricultural and forestry sectors173.Many existing programs prioritize short-
term outcomes like crop yield improvements, often at the expense of long-
term soil health and carbon sequestration benefits174,175. This narrow focus
on immediate agricultural outputs undermines efforts to manage soil
moisture effectively for climate mitigation176,177. Furthermore, certain
management practices that improve carbon sequestration, like afforestation
or conservation tillage, may inadvertently increase GHG emissions, high-
lighting the need for policies that address these trade-offs effectively44,178.
Financial incentives, such as subsidies and payments for ecosystem services
(PES), can encourage the adoption of sustainable land management prac-
tices that improve soil health and increase carbon storage179. Programs like
the USDA's Environmental Quality Incentives Program (EQIP) provide
financial and technical assistance tohelp implement long-termconservation
practices that enhance soil, water, and air quality180. Economicmechanisms,
such as carbon credits and emissions trading, can encourage land use
activities that sequester carbon181,182. However, challenges in accurately
documenting sequestered carbon and integrating land-use activities into
emissions trading highlight the need for robust Measurement, Reporting,
and Verification (MRV) systems182.

Toovercome these challenges, future policiesmust adopt an integrated,
long-term approach that aligns soil moisture management with broader
climate goals. First, policies should shift focus from short-term agricultural
outputs to practices that promote soil health and long-term carbon
sequestration. Moreover, integrating nutrient management practices, like
composting and organic amendments, can further contribute to climate-
smart soilmanagement183,184. Incentive frameworks should also be refined to
encourage the adoption of climate-smart agricultural practices. Financial
incentives such as carbon taxes, subsidies, and carbon credit offsets can be
powerful tools, but they must be carefully designed to avoid unintended
consequences, like increased emissions from certain management
practices176. Additionally, the development of localized soil information
systems can provide tailored data on soil conditions and carbon seques-
tration potential, enhancing the precision and effectiveness of soil moisture
management strategies. Engaging key stakeholders, including farmers,
policymakers, and scientists, in the design and implementation of these
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policies will be essential for fostering widespread adoption and ensuring
their success.

Conclusion
This review has demonstrated the pivotal role of soil moisture in regulating
CS-GHG. Soil moisture directly influences plant photosynthesis and
respiration, soil microbial activity, and soil organic matter decomposition,
with optimal levels enhancing these processes and increasing carbon
sequestration.However, extremes in soilmoisture disrupt thesemechanisms,
reducing sequestration efficiency.CO2 emissions exhibit a "Peak andDecline"
pattern, peakingat around40%WFPS,whileCH4andN2Oemissionspeakat
higher levels, between 60% and 80%WFPS for CH4 and around 80%WFPS
for N2O, highlighting the need for targeted soil moisture management.
Droughts reduce soil moisture, limiting carbon sequestration and altering
GHG emissions, while floods create anaerobic conditions favorable for CH4

production. Sustainable land management practices such as conservation
agriculture, agroforestry, and optimized water management are crucial for
enhancing carbon sequestration and reducing GHG emissions by improving
soil structure andmaintaining optimalmoisture levels.Moreover, improving
the accuracy of soil moisture and CS-GHG simulations hinges on enhancing
high-resolution multiscale observations and refining feedback modeling.
Integrating remote sensing technologies with expanded ground-based
observations, along with employing hybrid modeling frameworks can sig-
nificantly boost predictive capabilities while addressing data and feedback
modeling challenges. Additionally, iterative model-experiment approaches,
such as the ModEx framework, play a crucial role in linking observational
data with models, enabling continuous refinement and strengthening the
predictive power of CS-GHG models. Furthermore, current policies and
incentives need to be better aligned with long-term climate goals to enhance
soilmoisturemanagement for both carbonstorage and the reductionofGHG
emissions. Addressing these challenges through interdisciplinary approaches
and innovative technologieswill be essential inmitigating climate change and
promoting sustainable land management practices.
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