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A B S T R A C T

Terrestrial vegetation is a crucial component of Earth’s biosphere, regulating global carbon and water cycles and
contributing to human welfare. Despite an overall greening trend, terrestrial vegetation exhibits a significant
inter-annual variability. The mechanisms driving this variability, particularly those related to climatic and
anthropogenic factors, remain poorly understood, which hampers our ability to project the long-term sustain-
ability of ecosystem services. Here, by leveraging diverse remote sensing measurements, we pinpointed 2020 as a
historic landmark, registering as the greenest year in modern satellite records from 2001 to 2020. Using
ensemble machine learning and Earth system models, we found this exceptional greening primarily stemmed
from consistent growth in boreal and temperate vegetation, attributed to rising CO2 levels, climate warming, and
reforestation efforts, alongside a transient tropical green-up linked to the enhanced rainfall. Contrary to ex-
pectations, the COVID-19 pandemic lockdowns had a limited impact on this global greening anomaly. Our
findings highlight the resilience and dynamic nature of global vegetation in response to diverse climatic and
anthropogenic influences, offering valuable insights for optimizing ecosystem management and informing
climate mitigation strategies.

1. Introduction

Terrestrial vegetation stands as a fundamental constituent of the
biosphere, primarily regulating global carbon and water cycles (Gentine
et al., 2019), maintaining surface energy balance (Forzieri et al., 2020),
and forging interconnections with Earth’s climate (Green et al., 2017).
Via photosynthesis, global vegetation absorbs CO2 from the atmosphere,
transforming it into vital carbohydrate resources (Beer et al., 2010).
These resources, in turn, underpin the food web chain (Pimm et al.,
1991), define planetary boundary (Running, 2012), and offer numerous
ecosystem services such as wood production, providing clear water, and
serving as a natural solution for offsetting anthropogenic carbon

emissions (Griscom et al., 2017). Therefore, systematically monitoring
and assessing global vegetation status is imperative to understand Earth
system processes (Falkowski et al., 2000), develop strategies for climate
mitigation and adaptation (Canadell and Raupach, 2008), and support
ecosystem management and human welfare (Imhoff et al., 2004).

While satellite observations since 1982 have highlighted augmented
vegetation activity over terrestrial landscapes (Zhu et al., 2016), this
greening trend demonstrates considerable variability across various
time periods, biomes and climate zones (Mao et al., 2016; Zhang et al.,
2017b; Chen et al., 2019; Piao et al., 2020). This verdant expansion,
particularly evident within natural vegetation, has shown signs of
deceleration (Pan et al., 2018; Winkler et al., 2021), attributed to
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climate-related negative feedback loops (Liu et al., 2023a, 2023b) and
human disturbances (Matricardi et al., 2020; Liu et al., 2023a, 2023b).
According to NASA records (NASA, 2024), global climate has warmed
by 1.3 degrees Celsius since 1880, with the ten warmest years on record
occurring in the last two decades. Regions constrained by low temper-
atures, such as boreal and alpine domains, could benefit from this
warming climate (Keenan and Riley, 2018), while other regions, espe-
cially humid and semi-arid zones, might confront a subdued vegetation
vigor from heat and drought stresses (Vicente-Serrano et al., 2013). In
addition, human activities such as deforestation and urbanization have
significantly altered ecosystem structures and functions (Zhang et al.,
2021). To date, a thorough assessment of the global vegetation status
and its driving factors, especially within the context of multi-year trends
and variability, remains incomplete.

The pandemic from the coronavirus disease 2019 (COVID-19) has
cast a grave shadow over public health and global economic prosperity
(Ciotti et al., 2020). As a secondary effect, the extensive lockdowns,
travel restrictions, and reduced energy consumption during the
pandemic (Onyeaka et al., 2021), have resulted in the most substantial
short-term decline in global CO2 emissions since 1960 (Liu et al., 2022),
and spawned a beneficial side effect of improved air quality (Venter
et al., 2020), which could in turn promote vegetation growth by
enhancing radiation levels (Su et al., 2021; Liu et al., 2024b). None-
theless, the situation is complicated by secondary climate effects caused
by the pandemic-induced alterations in atmospheric constituents such as
aerosols and ozone (Lamboll et al., 2021). In addition, regional climate
variability such as precipitation and temperature anomalies, driven by
climate oscillations like La Nina and Indian Ocean Dipole, could
potentially counteract or modulate these COVID-19-associated effects
(Weir et al., 2021). Currently, a detailed evaluation of the impact of
COVID-19 on global vegetation anomalies has yet to be conducted.

Here, we explored the global vegetation status since 2001 with a
focus on the pandemic year of 2020 from a diverse range of remote
sensing datasets. Moreover, we investigated the drivers behind both
accumulated trend-related and instantaneous variation-related anoma-
lies in global vegetation activity based on the ensemble machine
learning (Caruana et al., 2004; Zhang et al., 2023) and land surface
model simulations from Trends in Net Land-Atmosphere Carbon Ex-
change Determined by Yields (TRENDY) (Sitch et al., 2015). The po-
tential vegetation impacts from COVID-19 were also examined using the
Earth system model simulations from the COVID-19 Model Intercom-
parison Project (COVID-MIP) (Lamboll et al., 2021). Despite the tran-
sient reduction in carbon emissions resulting from COVID-19 may not be
commensurate with the scale of the ongoing record levels of greenhouse
gas emissions, this unprecedented disruption may present a unique op-
portunity to explore the response and feedback of the Earth system to
human activities (Diffenbaugh et al., 2020). Thus, a thorough compre-
hension of the global vegetation status in 2020 provided by this study
holds the potential to yield valuable insights into the nuanced disrup-
tions of the carbon cycle linked to anthropogenic interventions.

2. Materials and methods

2.1. Multi-source remote sensing data

To evaluate global greening status, we utilized three groups of
remote sensing-based vegetation indices (VI), including Enhanced
Vegetation Index (EVI), Solar-induced Fluorescence (SIF) and leaf area
index (LAI). EVI is designed to enhance vegetation signals in high
biomass regions while reduce soil and atmospheric background in-
fluences (Huete et al., 2002), making it especially effective in areas
where traditional indices like normalized difference vegetation index
may saturate and fail to capture variability. SIF serves as a direct, real-
time indicator of plant health and stress by measuring the chlorophyll
fluorescence in the red and far-red spectrum emitted during photosyn-
thesis (Krause and Weis, 1991). LAI is a measure of canopy density

defined as the total leaf area per unit ground surface area (Fang et al.,
2019), which is closely associated with vegetation activity and pro-
ductivity. Overall, EVI and LAI are more about the structure and density
of vegetation (Fang et al., 2019), while SIF reflects the physiological and
functional attributes of plants (Sun et al., 2023). Here we used them in
conjunction to provide a more comprehensive characterization of global
vegetation status and dynamics.

We adopted three global monthly 0.05◦ EVI products, including
MODIS EVI from Terra (MOD13C2) for 2001–2020 and Aqua
(MYD13C2) satellites for 2003–2020 in the C6.1 version, along with
VIIRS EVI from the Suomi NPP satellite (VNP13C2) covering
2012–2020. In addition, we derived a global monthly 0.05-degree EVI
dataset (referred to as MCD43-EVI) from global daily seamless land
surface reflectance product (Liang et al., 2024). This reflectance dataset
underwent multiple processing steps, including Bidirectional Reflec-
tance Distribution Function (BRDF) correction (using MOD09GA/
MYD09A1 and MCD43A3 NBAR), outlier detection, gap filling, and
smoothing to address low-quality conditions such as cloud contamina-
tion (Liang et al., 2024).

We used three global 0.05◦ SIF products: 8-day reconstructed TRO-
POMI SIF (RT-SIF) (Chen et al., 2022a) from 2001 to 2020, monthly
Global OCO-2 based SIF (GO-SIF) (Li and Xiao, 2019) for the same
period, and the 16-day Global Contiguous SIF (GC-SIF) (Yu et al., 2019b)
from 2015 to 2020. Note that global SIF products selected here are not
direct observations, but retrieved products based on original SIF mea-
surement and supplemented by a series of remote sensing and
geophysical data. For example, RTSIF is a reconstructed global SIF
product based on the original TROPOMI SIF and by incorporating a
series of remote sensing indicators including the gap-filled MODIS BRDF
product, MODIS land surface temperature and CERES photosynthetic
active ration (Chen et al., 2022a, 2022b).

We further included three global LAI products in our study: the
monthly reprocessed 0.05◦ MODIS C6 LAI (Yuan et al., 2011; Yan et al.,
2016) from 2003 to 2020, biweekly 1/12◦ GIMMS4g V1.2 LAI (Cao
et al., 2023) and 8-day 0.073◦ GLOBMAP V3 LAI (Liu et al., 2012; Chen
et al., 2020) from 2001 to 2020. All the global VI products have been
gap-filled by the producers using different strategies to minimize the
effects of cloud contamination and other issues. As a result, these
products are continuous and consistent in space and time, making them
ready for global analysis. In this study, these 8-day or monthly VI
products with negative values treated as zero were averaged to annual
values for further analysis. Global land cover data from MODIS
(MCD12C1 C6.1) (Sulla-Menashe et al., 2019) was used to mask out
unvegetated areas based on the majority rule in the classification
scheme of the International Geosphere-Biosphere Programme (IGBP)
during 2001 to 2020. All sources of remote sensing products used in this
study were seen in Table S1.

We opted not to define a specific growing season in our study, owing
to the non-uniform thresholds of different indicators and the lack of
meaningful interpretation when computing a global mean from pixel-
level averages of the growing season (Zhang et al., 2017a, 2017b;
Chen et al., 2019). Nevertheless, we conducted a validation test using a
simplified growing season (GS) definition, where monthly air tempera-
ture exceeds 0 ◦C and the specific VI is above a conservative threshold
(0.05 for EVI and 0.01 for LAI and SIF). Such a GS definition is dynamic
and can minimize the snow and ice effects in the non-growing season.
We then calculated the annual GS length and GS accumulated total VI for
each indicator on the global scale (Fig. S1). Notably, our analysis
revealed that the GS total value closely aligns with the annual mean
value at the global scale among different VIs (Fig. S1), supporting the
validity of using annual mean values for our global analysis.

2.2. Decomposition of annual anomaly signal

To better understand global greening status in 2020, we decomposed
the annual greenness anomaly to the long-term trend-related and short-
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term variation-related components both at the global scale (Fig. 1) and
the pixel scale. We first normalized the annual long-term series of
greenness as Z-scores:

Z = (G − μ)/σ (1)

where Z represents Z-score; G denotes the annual greenness, measured
in terms of EVI, SIF and LAI; μ and σ are multi-year mean and standard
deviation ofG, respectively, calculated over the overlapping period from
2003 to 2020.

Utilizing the normalized greenness, we then derived the trend-
related (Gt) and variation-related (Gv) anomalies through a least-
squares linear regression model:

Zt = β0 + β1 ×Tt + ϵt (2)

Gt = Zt − ϵt (3)

Gv = ϵt (4)

where Zt is the annual normalized greenness for year t; β0 is the intercept
of the regression; β1is the slope coefficient, indicating the greening rate
during the study period; Tt is the time variable (year) for the calculated
anomaly; and ϵt represents the regression residual, accounting for the
variation in the annual anomaly signal that is not explained by the time
trend. This straightforward method could help us to effectively isolate
the trend-related component (Gt) from the variation-related component
(Gv) within the total greenness anomaly (Zt), offering a clearer
perspective on the global greening status in a specific year, such as 2020.

2.3. Modeling and attribution of global greening based on the ensemble
machine learning

To simulate and attribute global greening in 2020, we developed a
global greenness model using the ensemble machine learning (EML). As
a meta-approach in machine learning, EML could boost accuracy,
robustness, and effectiveness by integrating predictions from multiple
ML models (Caruana et al., 2004; Sagi and Rokach, 2018). Here, our
ensemble included five state-of-the-art MLs: Random Forest, CatBoost,
XgBoost, LightGBM and Multi-Layer Perceptron (Zhang et al., 2023).
Random Forest employs a bagging approach, aggregating multiple de-
cision trees for stronger predictions (Breiman, 2001). CatBoost, XgBoost,
and LightGBM adopt the strategy of gradient boosting to build decision
trees sequentially, each differing in specific algorithmic nuances (Chen
and Guestrin, 2016; Ke et al., 2017; Prokhorenkova et al., 2018). As a
deep learning approach, the Multi-Layer Perceptron consists of multiple
layers of neurons inspired by biological neural networks and uses
backpropagation and gradient-based optimization methods to update
weights (Abiodun et al., 2018). Collectively, the chosen ML models,
distinct in their structure and parameters, are anticipated to provide

extensive capabilities in capturing the complex interactions between
global vegetation dynamics and their underlying drivers.

To construct our EML model, we incorporated several key factors
related to climate variability (solar radiation, air temperature, precipi-
tation), land cover change (proportions of croplands and forests), CO2
concentration, and nitrogen deposition as inputs, in alignment with
previous studies (Huang et al., 2018) and the TRENDY project (Sitch
et al., 2015). The climate data were sourced from TerraClimate
(Abatzoglou et al., 2018), while the annual land cover dynamics was
extracted from the MODIS product (MCD12C1 C61). Annual CO2 re-
cords and nitrogen deposition (a sum of dry and wet depositions) were
adopted from the inputs used in TRENDY (Sitch et al., 2015). The output
or prediction of the model was annual LAI from MODIS. To compare
with TRENDY, we set the model’s spatial resolution as 0.5 degree.

For the training process, we randomly selected 80 % of the global
total vegetated pixels for training (~ 0.73 million records) and the
remaining 20 % for validation (~ 0.18 million records). Throughout this
process, we fine-tuned eachMLmodel and their ensemble using five-fold
cross-validation. Specifically, optimization of each ML model was
executed utilizing the grid search algorithm, following which an
ensemble output was derived by integrating the predictions from these
models with assigned weights:

Ĝ =
∑N

i=1

(
wi • Gi,x

)
(5)

where Ĝ denotes the estimated ensemble output for greenness; N is the
number of the total involved ML models in this study, constrained to a
maximum of five;Gi,x is the prediction of the ith MLmodel given an input
of x; and wi is the weight assigned to the prediction of the ith model. The
optimization of these weights was achieved through an approach named
forward stepwise ensemble selection (Caruana et al., 2004) by mini-
mizing the root mean square error (RMSE) between the prediction and
observation for all training samples. Unlike the simple averaging
method that assigns uniformweights across all base models, our selected
approach is underpinned by a greedy search-based algorithm, renowned
for its efficiency and robustness, particularly in mitigating overfitting
issue (Caruana et al., 2004). The framework of EML has been approved
to effectively simulate global fire dynamics (Zhang et al., 2023).

We executed the optimization and evaluation of EML based on the
open accessed Automated Machine Learning Python package of mljar
(Version 1.1.2; https://github.com/mljar/mljar-supervised). The opti-
mized parameters for the five involved machine learning models were
presented in Table S2. Performance evaluation revealed that LightGBM
achieved the best results with the lowest RMSE, followed by XgBoost,
Random Forest, CatBoost and Neural Network (Fig. S2). Based on the
forward stepwise ensemble selection mentioned above, we identified
LightGBM and XbBoost as the best combination to construct the final
ensemble with their weight as 0.6 and 0.4, respectively. Utilizing global

Fig. 1. Example of the decomposition of global greenness anomaly in 2020 into the trend-related and variation-related components. The data here is global
annual mean LAI from MODIS. Annual data is normalized to the Z-score based on its multi-year mean and standard deviation from 2003 to 2020.
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validation data excluded from the training phase (20 %), we found the
optimized EML accurately predicted annual LAI with non-systematic
errors (slope = 1.01), achieving an RMSE of 0.2 m2 m− 2. This
outcome markedly exceeds the performance of the TRENDY LAI (shown
in the next section), which recorded a slope of 1.21 and an RMSE of 1.23
m2 m− 2 (Fig. S3). Spatially, EML was approved to better simulate the
annual total anomaly of LAI and their trend-related and variation-
related components in 2020 compared to TRENDY (Fig. S4; Table S3).
Nonetheless, both EML and TRENDY showed limitations in capturing
subtle anomaly signals when compared to the annual absolute values. A
similar limitation has been noted in ML-based global carbon and water
flux datasets (Tramontana et al., 2016).

Leveraging the optimized EML along with global model inputs, we
systematically quantified the controls on vegetation greenness related to
climate change, land use/cover change (LUCC), rising CO2 and nitrogen
deposition through factorial simulation running (Table 1). Initially, a
comprehensive simulation was conducted where all group factors were
allowed to vary over time (2003− 2020), designated as “All”. Subse-
quent simulations involved maintaining one factor group at its 2003
baseline level, while permitting variations in the other groups over time.
The influence exerted by each individual factor group was then deduced
by calculating the differences between the ‘All’ scenario and these in-
dividual simulations (Table 1).

To identify the spatial pattern of major controls on the trend-related
anomaly in 2020, we compared annual trends of simulated LAI from
2003 to 2020 across four impact groups: climate change, LUCC, rising
CO2 and nitrogen deposition. We used the non-parametric Theil-Sen
estimator to calculate these trends, noting its effectiveness in handling
outliers (Fernandes and Leblanc, 2005). The factor group exhibiting the
highest absolute trend, either positive or negative, was labeled as the
“major control”, and its global impact area was subsequently quantified.
For the variation-related greenness anomaly in 2020, we identified its
primary climate control by comparing the de-trended LAI simulated
from solar radiation (RAD), air temperature (TMP) and precipitation
(PRE). Six primary climate controls were identified based on their
respective impacts, categorized as either positive or negative: positive
radiation controls (RAD+), negative radiation controls (RAD-), positive
temperature controls (TMP+), negative temperature controls (TMP-),
positive precipitation controls (PRE+), and negative precipitation con-
trols (PRE-).

2.4. Comparison of vegetation controls between EML and TRENDY

TRENDY is a collaborative scientific project that integrates a suite of
process-based land surface models known as Dynamic Global Vegetation
Models (DGVMs) to understand and quantify global carbon cycle’s
drivers and processes (Sitch et al., 2015; Friedlingstein et al., 2022).
These models, noted for their structural complexity, incorporate

physiological and biogeochemical processes, offering a process-based
perspective on global vegetation dynamics (Zhu et al., 2016; Piao
et al., 2020). This contrasts with machine learning models that are
primarily driven by data and statistical approaches and lack of
explainability as a “black box” (Roscher et al., 2020). However, TRENDY
encounters challenges such as dependence on model assumptions, un-
certainties in structure and parameters, and the quality of input data,
along with the complexities arising from their interactions and com-
pensations (Zhou et al., 2018; Bastos et al., 2020; Zhang et al., 2021).

To compare with vegetation controls from EML, we included annual
LAI simulations from 17 DGVMs in TRENDY version 10 (Table S4) and
calculated their ensemble mean and standard deviation for analysis.
Based on the protocol simulations, we derived the land use change effect
by calculating the difference between scenarios S3 (CO2, climate and
land use changes) and S2 (CO2 and climate changes), climate change
effect by the difference between S2 and S1 (CO2 change only), and CO2
effect by the difference between S1 and S0 (a control scenario with no
forcing changes). Since TRENDY models with N cycle have time-varying
N inputs for all scenarios, the nitrogen deposition effect cannot be iso-
lated and intertwined with the CO2 fertilization effect. To directly
compare the CO2 effect derived from EML, we further calculated the
ensemble mean of six models from TRENDY with only considering CO2
fertilization effect (Table S4).

We used TRENDY to quantify controls on the trend-related anomaly
in 2020 with a similar approach for EML (see above sections). For the
variation-related anomaly, TRENDY did not have specific climatic sim-
ulations. Therefore, it is not used to compare with EML. The spatial
resolutions of model outputs from TRENDY range from 0.5 to 2 degrees.
For consistency with EML, all TRENDY outputs were resampled to a 0.5
degree. We acknowledged that the comparison between TRENDY and
EML is not strictly aligned, given the differences among model inputs,
scenario designs, and factors considered. For instance, TRENDY utilized
global Land Use Harmonization data with a coarse spatial resolution
(0.25 degree) with a primary focus on land use change impact (Yu et al.,
2019a, 2019b), whereas EML employed MODIS land cover dynamics
with moderate resolution (500 m) mainly reflecting land cover change
effects, but missing land use information (Zhang et al., 2021). The dif-
ference in model configuration between EML and TRENDY may also
contribute to discrepancies in their spatial controls. Nonetheless,
juxtaposing process-based modeling with machine learning provides
valuable insights into global vegetation controls revealed by these
distinct modeling strategies.

2.5. Delineating regions impacted by COVID-19 lockdowns

The pandemic prompted widespread lockdowns aimed at curtailing
the rapid spread of the coronavirus in 2020 (Diffenbaugh et al., 2020).
However, the nature and extent of these lockdowns varied considerably
across countries (Liu et al., 2020, 2022), influenced by diverse public
health strategies, healthcare capacities, and socio-political contexts
(Onyeaka et al., 2021). To gauge the extent of potential vegetation in-
fluence from these lockdowns, we calculated the annual anomaly of
ground-level NO2 in 2020 relative to that of 2019. NO2 is a sensitive
indicator of the impact of COVID-19 lockdown because the reduced
emissions from the weakened transportation and industrial activities
could significantly decrease near-surface concentrations of NO2 (Venter
et al., 2020). Here, global daily 1-km NO2 concentrations from Sentinel-
5P NRTI was adopted to calculate the annual medium values of NO2 for
both 2020 and 2019. To construct the clear-sky data, pixels with cloud
fractions larger than 30 % were removed. Following empirical tests, a
decline threshold of 0.05 for the total vertical column of NO2 (defined as
the ratio of the slant column density of NO2 and the total air mass factor)
was then applied to delineate areas potentially influenced by COVID-19
lockdowns.

Table 1
Scenario design to delineate vegetation controls linked to climate change, land
use/cover change (LUCC), rising CO2 and nitrogen deposition. The symbol ‘+’
indicates that an input variable varies over time, while the symbol ‘-’ indicates
that the variable remains fixed at its initial 2003 level. The impact of specific
factors or factor groups on vegetation is assessed by the difference between the
‘All’ scenario and each individual scenario.

Simulations Climate LUCC CO2 Ndep

RAD TMP PRE

All + + + + + +

RADcontrol − + + + + +

TMPcontrol + − + + + +

PREcontrol + + − + + +

CLMcontrol − − − + + +

LUCCcontrol + + + − + +

CO2control + + + + − +

Ndepcontrol + + + + + −
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2.6. Quantifying COVID-19 effect on global greening anomaly through
COVID-MIP

The widespread lockdowns induced by COVID-19 resulted in a
notable reduction in greenhouse gas emissions and significantly altered
atmospheric constituents like aerosols, ozone, and optical properties
(Lamboll et al., 2021). These atmospheric changes are expected to in-
fluence the climate, subsequently affecting vegetation growth in both
lockdown and unlock down regions. In response to these phenomena,
COVID-MIP represents a collective of Earth system models designed to
simulate the modified scenarios that reflect the climatic impacts of the
COVID-19 pandemic (Lamboll et al., 2021). This initiative aims to un-
derstand and quantify the environmental repercussions of the pandemic-
related changes on a global scale. Here, we adopted the Max Planck
Institute Earth System Model (MPI-ESM1.2) (Mauritsen et al., 2019)
from COVID-MIP to evaluate the influence of COVID-19 on global
greening due to the availability of LAI simulation (Table S1). Annual
simulations for short-term COVID-19 effect from 2020 to 2024 were
involved in this study. To control the background climate variations
unrelated to the pandemic, baseline simulations running at the SSP2–4.5
scenario from 2015 to 2024 were further obtained. To quantify the
uncertainty in both the COVID-MIP and the baseline, ten distinct sim-
ulations were employed, each with a unique model initiation, spanning
from r1i1p1f99 to r10i1p1f99. Following the simulations, the ensemble
mean and standard deviation across these model runs were calculated.
The effect of COVID-19 on vegetation greening anomaly both over
lockdown and unlock down regions were then evaluated by comparing
the difference between COVID-MIP and the baseline running. Note that
COVID-MIP only simulated the direct climate forcing effects caused by
COVID-19, but not included the anthropogenic-induced land cover
changes. Here we used yearly land cover data fromMODIS (Table S1) to

characterize land cover change and then used EML simulations to
quantify its effect on annual LAI anomaly in 2020 over the lockdown
region.

2.7. Greening variability across climate zones and their potential linkage
with ENSO

Four climate zones including tropical, arid/semi-arid, temperate,
and boreal/alpine (Fig. S5) were identified using the 1-km Köppen-
Geiger climate classification (Beck et al., 2018). To evaluate the con-
tributions of these climate zones to global greenness variability, annual
area-weighted total LAI values were computed for each zone from 2003
to 2020. For each climate zone, the long-term trend was removed, and a
Z-score was calculated to identify years with significant anomalies
exceeding one standard deviation. We utilized the monthly Oceanic
Niño Index (ONI) from National Oceanic and Atmospheric Administra-
tion (NOAA) to monitor both moderate (ONI > 1.0) and strong (ONI >
1.5) phases of El Niño and La Niña events1, which are potentially linked
with global and regional greenness variability.

3. Results

3.1. Earth’s exceptional greening in 2020

Global vegetation reached its peak greening in 2020, continuing a
long-term trend since 2001 (Fig. 2). This is evidenced by three groups of
vegetation activity proxies from ten remote sensing-based products,
including EVI, SIF and LAI (Fig. 2a). Specifically, annual Z-scores

Fig. 2. Interannual change of global vegetation activity from satellite remote sensing observations since 2001. (a) Annual anomalies in global vegetation activity
with a focus on the year 2020 (marked by red dashed vertical lines) in terms of Enhanced Vegetation Index (EVI), Sun-Induced Fluorescence (SIF) and Leaf Area Index
(LAI). All anomalies are normalized to Z-scores using their multi-year means and standard deviations during the overlapping period of 2003 to 2020. For VIIRS-EVI,
the period is from 2012 to 2020, while for GC-SIF, the period is from 2015 to 2020. The error bar in TRENDY-LAI represents one standard deviation from the
ensemble models from TRENDY. (b) Spatial pattern of years with the highest LAI values during 2003 to 2020. (c) Fractional areas for the year with the highest LAI.
The area is relative to the global total vegetated area. (b) and (c) are based on MODIS LAI. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)

1 https://ggweather.com/enso/oni.htm.
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(defined as the annual anomaly normalized by the standard deviation
[σ]) for global averaged EVI, SIF and LAI in 2020 are 1.69 ± 0.23 σ
(MOD-EVI, MYD-EVI and MCD43-EVI), 1.97 ± 0.04 σ (RT-SIF and GO-
SIF), and 1.92 ± 0.06 σ (MODIS-LAI, GIMMS4g-LAI and GLOBMAP-
LAI), respectively. The ensemble land surface models from TRENDY
also captured the presence of such a greening peak in 2020, but with a
lower amplitude on annual LAI (1.13 ± 0.36 σ) when compared to
remote sensing products (1.90 σ for MODIS-LAI, 1.93 σ for GIMMS4g-
LAI and 1.87 σ for GLOBMAP-LAI) (Fig. 1a). It is worth noting that
MYD-EVI showed a peak greening year in 2017, while VIIRS-EVI indi-
cated 2016 as the peak year, with both products recognizing 2020 as the
second-highest greening year. However, when accounting for the
growing season, the integrated annual values for both MYD-EVI and
VIIRS-EVI were still highest in 2020 (+0.19σ and+ 0.88σ higher than in
2017 and 2016, respectively), aligning with the patterns observed in the
other eight global VI products (Fig. S1).

Spatially, multi-year peak greenness exhibits a heterogeneous
pattern with more recent peak values (towards 2020) predominantly
concentrated in India, central Europe, eastern Africa, and parts of China
(Fig. 2b). China and India are two leading contributors to global
greening (Chen et al., 2019). However, India showed a much higher
fraction of multi-year peak greenness (74.1 %) in 2020 compared to
China (17.7 %) (Fig. S6). Globally, the year 2020 exhibited the highest
fraction of annual peak greenness as measured by MODIS LAI over the
vegetated area (18.6 %), much higher than the subsequent years of 2016
(10.6 %) and 2019 (10.3 %) (Fig. 2c). A similar notable peak in 2020 for
the multi-year maximum LAI was also reflected by GIMMS4g LAI and
GLOBMAP-LAI data (Fig. S7), although subsequent years displayed
variability. Since both GLOBMAP-LAI and GIMMS4g-LAI were devel-
oped based on MODIS-LAI data, we acknowledge this comparison was
somewhat relative.

3.2. The greening anomaly of 2020 contributed by trend-related and
variation-related components

To better understand the annual greenness anomaly in 2020, we
decomposed it into two distinct components: accumulated trend-related
anomaly and instantaneous variation-related anomaly (Fig. 1). Globally,
terrestrial vegetation exhibited a significant positive anomaly of 1.90 σ
in 2020 relative to the multi-year mean based on MODIS LAI, with a
higher contribution from the trend-related anomaly (1.51 σ) than the
variation-related anomaly (0.39 σ).

Spatially, the trend-related anomaly showed positive patterns over
76.7 % of total vegetated area, widely spread from major continents
except Australia (Fig. 3b). In contrast, the variation-related anomaly
showed positive patterns in a lesser extent (53.6 % of total area), mainly
concentrating in India, eastern Africa and Brazil, and western Russia
(Fig. 3c). Notably, the variation-related anomaly showed nearly double
negative areas (46.3 %) than the trend-related area (23.3 %), which
were mainly located in Southern China, western Australia, southern
Argentina and most North America (Fig. 3c).

When combined, the positive trend-related anomaly was intensified
by the positive variation-related anomaly across approximately 41.4 %
of the total vegetated area, with a particular concentration in India and
central Russia (Fig. 3d). Nevertheless, a contrasting pattern persisted
across 35.4 % of the total vegetated region, where the positive trend-
related anomaly contends with a counteracting negative variation-
related anomaly. This occurrence is predominantly situated in regions
like China, a substantial portion of North America, and southern
Argentina. Consequently, the leading greening country of China showed
a lower anomaly of greenness (i.e., +1.35 σ) than India in 2020 (+2.66
σ; Fig. S8). Notably, a small portion of the vegetated area (11 %), pri-
marily located in Australia and eastern Canada, showed both negative
trend- and variation-related anomalies. A comparable extent of regions

Fig. 3. Spatial patterns of annual greenness anomaly in 2020 contributed by trend-related and variation-related components based on MODIS LAI. (a)
Annual total greenness anomaly in 2020. (b) Annual trend-related greenness anomaly in 2020. (c) Annual variation-related greenness anomaly in 2020. (d) Co-
changes from trend-related (T) and variation-related (V) components on annual total greenness anomaly; ‘+’ and ‘-’ in the legend indicate positive and negative
anomalies, respectively. The insect chart on the left shows latitudinal distributions of annual total anomaly in (a) and its two components (b) & (c). The insect pie
chart in (d) shows the relative portion of each category to the global total vegetated area.
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(12.3 %) demonstrated the counteraction of the negative trend-related
anomaly by the positive variation-related anomaly, which were mostly
scattered in tropical regions (Fig. 3d). Two other independent vegetation
indicators, SIF and EVI, showed similar patterns of co-changes between
trend-related and variation-related anomalies (Fig. S9).

3.3. Attributions of annual trend-related and variation-related anomalies
in 2020

Through simulations from the ensemble machine learning (EML)
models, we explored primary factors influencing both trend- and
variation-related anomalies in global vegetation greenness in 2020
(Fig. 4). We found that the rising atmospheric CO2 dominated the
accumulated trend-related anomaly over 42.4 % of the total vegetated
area, followed by climate change (30.4 %), land use/cover change
(LUCC) (15.5 %) and nitrogen deposition (11.7 %) (Fig. 4a). Globally,
our EML-based approach well simulated the global LAI trend from
MODIS with a marginal error of − 1.5 %, and the underlying drivers of
this trend were generally in alignment with the land surface models from
the TRENDY project (Fig. 4b). However, the EML-based models
exhibited superior performances in simulating annual LAI trends at the
regional scale compared to TRENDY (Figs. S3 & S4). Overall, the EML-
based approach revealed a more extensive CO2 association with the
greening trend, especially in arid/semi-arid and temperate zones, as
opposed to the tropical emphasis reflected by TRENDY (Fig. S10). In
addition, the EML-based approach accentuated the negative effect of

LUCC in tropical regions, yet concurrently underscored the positive
impacts of LUCC in temperate regions (such as China), which is not
shown in TRENDY (Fig. S11). Notably, the EML approach uncovered a
dominant impact of nitrogen deposition in regions with sparse vegeta-
tion, such as the Tibetan Plateau and eastern Africa (Fig. 4a), a nuance
that is not distinctly delineated by TRENDY.

For the instantaneous variation-related anomaly of LAI in 2020,
precipitation showed the major control over 37.4 % of the global
vegetated area, which is comparable to the radiation control (36.1 % of
the total area), but larger than temperature control (26.4 % of the total
area) (Fig. 4c). Spatially, the strong wetting anomaly and the accom-
panying radiation variation (Fig. S12) were the primary drivers of the
observed positive greenness anomaly in regions such as eastern Brazil,
eastern Africa, and most of India (Fig. 4c). Additionally, a warming
anomaly had contributed to a positive greenness anomaly in northern
Eurasian. Conversely, the substantial drying anomaly was responsible
for a negative greenness anomaly observed in central Austria and North
America. Notably, a dimming condition was associated with a negative
greenness anomaly in southern China, whereas a brightening condition
was linked to a negative greenness anomaly in southern Argentina
(Figs. S12 & 4C).

Among the four climate zones (Fig. S5), the boreal/alpine zone had
the highest contribution to the global area-weighted greenness anomaly
in 2020, accounting for 31.7 % (Fig. 4d). In contrast, the arid/semi-arid
zone had the smallest share at 14 %. The tropical and temperate zones
registered intermediate contributions of 30.6 % and 23.7 %,

Fig. 4. Major controls on annual trend-related and variation-related anomalies of greenness in 2020 derived from the ensemble machine-learning (EML).
(a)Major controls on annual LAI trend related to climate, land use/cover change (LUCC), CO2 fertilization and nitrogen deposition (Ndep). (b) Comparison of annual
LAI trend controls from EML and TRENDY. (c) EML-based climate controls on annual LAI variation in 2020. Three climatic factors are included: radiation (Rad), air
temperature (Tmp) and precipitation (Pre). The symbols “+” and “-” represent positive and negative controls, respectively. The insect pie shows the relative area of
each control to the global total vegetated area. (d) Comparison of annual LAI anomalies in 2020 (total anomaly and its two trend-related and variation-related
componnets) among different climate zones. Annual variations in three key climatic factors are shown by different symbols and quantified by the secondary axis.
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respectively. Regarding the global trend-related anomaly, the boreal/
alpine zone was most influential, contributing 40.8 %, while the arid/
semi-arid zone was least at 12.7 %. For the variation-related anomaly,
the tropical zone was predominant, contributing 56.4 %, with the
boreal/alpine zone contributing the least at 2.7 %.

3.4. Limited effect of COVID-19 on global greening

The global lockdown status triggered by the COVID-19 pandemic in
2020 led to notable temporary reductions in air pollution and green-
house gas emissions as well as human disturbances, which could in turn
influence climate variability and vegetation anomaly. Utilizing satellite-
based observations of ground-level NO₂, a sensitive indicator of air
pollution, from TROPOMI, we identified approximately 21.4 % of global
vegetated area as the direct impacted region by COVID-19 (Fig. 5a). This
defined lockdown region generally aligns with the patterns of observed
global air pollution reduction documented in earlier studies (Shrestha
et al., 2020; Venter et al., 2020) and partially overlap with the most
densely population area such as in China and Inida. However, both
lockdown and unlock down regions showed heterogeneous patterns in
annual greenness anomalies in 2020 (Fig. S13a & b). On a broad scale,

lockdown regions (+ 0.32 σ for annual LAI variation) exhibited a slightly
greener than the unlock down region (+ 0.11 σ) (Fig. 5b), although their
difference diminished as the time progressed, particularly in the second
half of the year (Fig. S13).

We further examined land cover change in 2020 relative to 2019 and
its effect on annual LAI anomaly in 2020 (Fig. S14). In the lockdown
region, there was a net increase of 0.21 % for the averaged forest frac-
tion and a net decrease of 0.1 % for averaged crop fraction. In contrast,
the unlock region experienced a slightly decrease in forest fraction by
0.02 % and a smaller decrease in crop fraction by 0.07 %. As a result, the
land cover changes had a positive effect on LAI (+ 0.02 σ) in the lock-
down region, compared to a negative effect of − 0.05 σ in the unlock
region. However, these effects are much smaller than climate impacts on
LAI, which were + 0.23 σ in the lockdown region and + 0.11 σ in the
unlock region, largely due to wetting and warmer anomalies (Fig. S12).

Based on the model intercomparison project tailored to assess
COVID-19 impacts (COVID-MIP), we found that the net effect of climate
forcing from COVID-19 on global vegetation was notably limited,
registering a mere +0.001 % change in LAI (Fig. 5c). When focusing on
the lockdown region, the impact of COVID-19 was slightly more nega-
tive, showing a − 0.24 % change in LAI relative to the five-year mean.

Fig. 5. Potential impact of COVID-19 lockdown on global vegetation greenness anomaly in 2020. (a) Identification of potential impact areas due to COVID-19
lockdown and travel restrictions. Their relative areas are shown by the percentage values in the legend. (b) Histograms of annual LAI variations in 2020 for lockdown
and unlockdown regions. (c) COVID-19 effects on annual greenness anomalies simulated by COVID-MIP. The observation is from MODIS LAI. The baseline simulation
is from CMIP6 under the SSP2–4.5 scenario. The difference between COVID-MIP and the baseline simulation represents the net effect of COVID-19. All LAIs are
normalized by their multiple year average from 2015 and 2019. The observed LAI anomaly in 2020 relative to the multi-year mean is shown in green, with the
COVID-19 effect marked in red in the parentheses. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of
this article.)
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This contrasts with a smaller positive impact of +0.08 % in the unlock
down regions. The simulated negative LAI by COVID-MIP (Fig. 6a) was
related to a drying anomaly (Fig. 6d), which resulted from enhanced
solar radiation (Fig. 6b) and climate warming (Fig. 6c) in response to the
reduced anthropogenic greenhouse gas and pollution emissions due to
the widespread lockdown (Lamboll et al., 2021). Interestingly, the
COVID-19 induced climate forcing was generally opposite to the natural
climate variability in 2020 (Fig. S12). However, the direct climate im-
pacts from COVID-19 were much smaller when compared to the
observed LAI anomalies (+2.9 % in lockdown regions and + 1.1 % in
unlock down regions), indicating that the overall influence of COVID-19
on vegetation variations in 2020 was minor.

3.5. Global vegetation variability over the past two decades

To better understand the distinct nature of the 2020 greening
anomaly, we contextualized it against the backdrop of vegetation vari-
ability observed over the past two decades (Fig. 7). Amidst an over-
arching trend of greening, we found that global vegetation in terms of
MOD-LAI has exhibited significant variability during this period,
underpinned by distinct contributions from various climate zones. The
year 2020 showed the most pronounced positive variability (+1.45 σ),
largely driven by the tropical zone, contrasting sharply with 2016
(+1.43 σ), when the temperate and boreal/alpine zones were more
influential. Earlier, 2006 (+1.07 σ) and 2015 (+1.05 σ) witnessed

Fig. 6. Spatial patterns of net effects of COVID-19 on annual mean LAI (a), solar radiation (b), air temperature (Tair) (c) and relative humidity (RH) (d)
over the lockdown region. The net effect is quantified by the difference between COVID-MIP and the baseline SSP2–4.5 scenario in 2020. To be consistent with
Fig. 5c, the difference or annual anomaly is normalized by the mean of the baseline simulation from 2015 to 2019.

Fig. 7. Global vegetation variability contributed by different climate zones from 2003 to 2020. Annual area-weighted LAIs was detrended and detracted from
their multi-year averages. Anomalies exceeding one standard deviation from the mean are marked by white asterisks. The upper figure shows the monthly Oceanic
Niño Index (ONI), with positive values indicating a tendency towards El Niño, and negative values towards La Niña. The dashed lines indicate an ONI threshold of
1.0, above or below which represents moderate or strong El Niño or La Niña events.
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significant contributions from the temperate zones. In contrast, years
like 2008 (− 2.17 σ), 2012 (− 1.7 σ), and 2009 (− 1.16 σ) experienced
major negative variability, predominantly influenced by either tropical
or boreal/alpine zones. Notably, extreme ENSO events exhibited con-
nections with vegetation variability in specific climate zones, such as the
tropical zone in 2020, the temperate zone during 2015–2016, and the
arid/semi-arid zone in 2010–2011 (Fig. 7). However, these influences
varied considerably, lacking uniformity and consistency both within and
across zones. Overall, global vegetation displayed a recurring cycle, with
peak greening occurring every 3–4 years, interspersed with browning
events spanning 1–2 years, a rhythm found to be even more frequent in
certain climate zones (Fig. S15). These marked variability in terrestrial
vegetation ecosystems are anticipated to induce pronounced fluctua-
tions in global carbon and water cycles.

4. Discussion

We observed a notable peak in global vegetation greening in 2020 by
diverse remote sensing data (Fig. 2). This peak continues a sequence of
similar phenomena previously recorded in 2007 (Zhang et al., 2017a,
2017b), 2011 (Poulter et al., 2014), and 2016 (Cao et al., 2023), fitting
into a long-term greening trend since the early 2000s (Piao et al., 2020).
This consistent pattern suggests a robust resilience and adaptability of
global vegetation in the face of changing environmental conditions (Piao
et al., 2020). However, the observed peak greening exhibited consid-
erable spatial heterogeneity (Fig. 3), which is governed by a multifac-
eted mechanism (Fig. 4). Understanding these patterns and the
mechanisms behind them is essential for projecting sustainability and
evaluating potential risks linked to this encouraging greening trend
(Piao et al., 2020).

Our study implemented a straightforward yet effective signal
decomposition approach to unravel the interaction between potential
long-term trends and short-term variability influencing the record
greening in 2020. We found that the 2020 global greening anomaly was
primarily attributed to the trend-related component (79 %; Fig. 1),
which positively affected over 76 % of total vegetated area (Fig. 3). Our
EML-based attribution confirmed the rising CO2 as the major influencing
factor for such trend-related anomaly, followed by climate change,
LUCC and nitrogen deposition (Fig. 4b). Such a control order is generally
consistent with land surface models from TRENDY (Sitch et al., 2015;
Zhu et al., 2016). However, our EML-based approach showed a more
extensive CO2 control at the spatial scale, especially in temperate and
arid/semi-arid zones (Fig. S10), diverging from the tropical-centric
emphasis highlighted by TRENDY (Zhu et al., 2016; Piao et al., 2020).
The rising CO2 can directly enhance canopy photosynthesis through
accelerated carboxylation, known as the ‘CO2 fertilization effect’ or
‘physiological effect’ (Farquhar and Sharkey, 1982). This effect can
further enhance vegetation greenness by causing partial closure of leaf
stomata, thereby improving water-use efficiency (Keenan et al., 2013), a
phenomenon particularly relevant in water-limited areas like semi-arid
regions (Ukkola et al., 2016; Gentine et al., 2019). These complex, non-
linear processes may not be fully captured by the TRENDY models (Liu
et al., 2019; Chen et al., 2022a, 2022b). Our findings, indicating a more
extensive influence of CO2, aligned with recent advancements in sta-
tistical modeling studies that similarly highlight this broader impact
(Donohue et al., 2013; Huang et al., 2018). However, it should be noted
that the rising CO2 affects vegetation not only through ‘physiological
effect’ but also ‘radiative forcing effect’. The latter refers to the climate
phenomenon that CO2 concentrations tend to increase downward
longwave radiation, leading to alterations in temperature and precipi-
tation, and subsequently affecting plant growth (Winkler et al., 2021).
The EML may not effectively separate these two effects, which could
partially explain that TRRENDY tended to have a larger climate effect
than EML (Fig. S10).

While occurring locally, LUCC exerted a significant control on the
trend-related anomaly, impacting approximately16% of the total

vegetated area, an extent about half of that affected by climate change
(Fig. 4a). This is generally consistent with recent studies highlighting the
pivotal roles of land use/cover change both at global (Arneth et al.,
2017; Marques et al., 2019) and regional scales (Yu et al., 2019a, 2019b;
Zhang et al., 2021). However, our EML-based attribution revealed a
more extensive positive effect of LUCC in temperate regions, a conclu-
sion that contrasts with simulations by TRENDY (Fig. S11). This
greening in temperate zones is primarily attributed to widespread
reforestation efforts in China (Yu et al., 2022) and/or the intensification
of cropland (Chen et al., 2019), which appears to be underrepresented
by the current TRENDY models (Piao et al., 2020; Park et al., 2023). It is
worth noting that extensive cropland management practices such as
irrigation, fertilization, and crop genetic modifications was not directly
reflected in LUCC derived from MODIS products. Consequently, the CO2
control over temperate croplands identified by both EML and TRENDY
(Fig. S10) may be overestimated due to the underestimation of these
human-dominated practices (Chen et al., 2019; Park et al., 2023). Ni-
trogen deposition exhibited dominant influences in some remote regions
with sparse vegetation (Fig. 4a), suggesting that air pollution or wildfire
smokes might positively affect these nitrogen-limited natural areas
(Stevens et al., 2004; Bobbink et al., 2010). However, the extent and
amplitude of such effects need further investigation through field con-
trol experiments (Du et al., 2020).

Our study demonstrated that instantaneous variation-related anom-
alies could lead to more pronounced and sometimes negative changes in
vegetation activity compared to the more gradual trend-related changes
(Fig. 3). The instantaneous anomaly, in comparison to the accumulated
one, displayed almost twice the extent of negative patterns (46.3 %
versus 23.3 %) and highlighted markedly stronger amplitudes in both its
positive and negative manifestations (Fig. 3). Owing to the counter-
acting effects of these patterns, the overall contribution of the variation-
related anomaly to the global total anomaly was comparatively smaller
(Fig. 1). However, it exerted more pronounced influences on regional
greening anomalies (Fig. 3). China, despite being a major contributor to
global greening (Chen et al., 2019), exhibited a lower greenness
anomaly (+1.35 σ) compared to India (+2.66 σ) in 2020 (Fig. S8). This
greenness difference is primarily attributed to a substantially larger
positive variation in India caused by a wetting anomaly, contrasted with
a widespread negative variation in China caused by reduced radiation
and/or partial drying anomaly (Figs. 3 & S12). This finding highlights
the importance of considering both short-term variability and long-term
trends when studying and managing vegetation dynamics and
ecosystem health, particularly at the regional scales (Jung et al., 2017).

Although 2020 was recorded as the one of the warmest years in
history (NASA, 2024), our EML-based simulations revealed that pre-
cipitation emerged as the dominant factor controlling the annual LAI
variation in this year, affecting 37.4 % of the total area (Fig. 4c). This
impact was on par with that of radiation control, which impacted 36.1 %
of the area, and was more substantial than the effect of temperature
control at 26.4 %. In specific regions like eastern Brazil, eastern Africa,
and most of India, a strong wetting anomaly, combined with radiation
variation, was identified as the key driver of the observed positive
greenness anomaly. This regional wetting anomaly is likely to be linked
with the strong 2019–2020 Indian Ocean Dipole and the moderate La
Nina event in late 2020 (Weir et al., 2021). In regions like central Austria
and North America, a substantial drying anomaly led to a negative
greenness anomaly (Qin et al., 2022), whereas in southern China, a
dimming condition was linked with decreased greenness (Chen et al.,
2021). Conversely, in northern Eurasia, a warming anomaly played a
role in enhancing greenness (Park et al., 2020). These diverse controls
identified in our study highlight the complexity of climatic influences on
ecosystems across the globe (Piao et al., 2020; Tang et al., 2020). The
existing TRENDY models are unable to isolate the impact of individual
climate factors on vegetation due to their configuration (Sitch et al.,
2015). Our EML-based study offers a valuable supplement to address this
limitation. However, it should be noted that while EML performed well
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in simulating annual LAI values during the study period (Fig. S3), its
ability to capture anomalies—small deviations after removing the multi-
year mean baseline—was relatively weak (Table R3). Future improve-
ments through refining temporal and spatial resolutions (e.g., seasonal
scale at Landsat/Sentinel resolutions), including additional environ-
mental predictors (e.g., climate extremes, root zone water content, and
land management), incorporating more vegetation traits representing
acclimation, state dependency and lag effects, and leveraging more
advanced deep learning model architectures (e.g., LSTM, Transformer
and their hybrid models) may help address this issue.

Despite COVID-19 lockdowns reduced air pollution (Venter et al.,
2020) and human disturbances (Onyeaka et al., 2021), our study indi-
cated that their overall impact on global vegetation was limited (Fig. 5),
countering expectations of a major positive environmental shift on
ecosystems due to reduced human activities (Diffenbaugh et al., 2020).
We observed that lockdown regions exhibited a slight increase in
greenness (+0.32 σ in LAI variation) compared to non-lockdown regions
(+0.11 σ), yet this disparity diminished over time (Fig. S13). A regional
study highlighted a rapid greening response in China’s spring vegetation
to COVID-19 restrictions (Su et al., 2021), but our study indicated that
this short-term effect was not sustained and ultimately did not alter the
overall annual browning anomaly (Fig. S13). Possible reasons for this
outcome might be linked to heightened secondary pollutions (such as
haze and ozone pollutions) during the COVID-19 lockdown in China
(Huang et al., 2021), which could have weakened the positive vegeta-
tion effect of COVID-19 (Su et al., 2021; Liu et al., 2024b). Although the
slightly positive LUCC effect in the lockdown region (Fig. S14) aligns
with the expectation of reduced disturbance due to the COVID-19
lockdown, directly attributing these LUCC to the lockdown is chal-
lenging. Based on fully coupled general circulation models from COVID-
MIP (Lamboll et al., 2021), we further confirmed that the net effect of
COVID-19 related to climate forcing on global LAI in 2020, encom-
passing both lockdown and unlock down regions, is marginal when
compared to the natural variability (Fig. 5). However, COVID-MIP
suggested that the simulated negative LAI effect over the lockdown re-
gion was linked to a warming-induced drying anomaly, which generally
opposed the natural climate variability in 2020. This conclusion may
need further validation based on independent Earth system model
simulations given the uncertainty in COVID-MIP (Jones et al., 2021).

We observed a recurring cycle of peak greening in global vegetation
every 3–4 years over recent decades (Fig. S15), marked by considerable
inter-annual variability (Fig. 7). The year 2020 stood out with the most
pronounced positive variability in global vegetation greenness, pri-
marily contributed by the tropical zone (Fig. 7). However, earlier peak
greening or browning years exhibited a variety of contributions from
different climate zones, suggesting diverse vegetation responses at the
regional scale. Extreme ENSO events were linked with vegetation vari-
ability in specific zones (Zhang et al., 2019a; Dannenberg et al., 2021),
yet these influences varied widely (Fig. 7). Previous studies highlighted
the influence of precipitation-sensitive areas such as arid/semi-arid
zones on global vegetation dynamics (Poulter et al., 2014; Ahlström
et al., 2015). However, we did not observe such a distinct role (Fig. 7),
possibly due to the counteraction effects between the northern and
southern hemispheres (Zhang et al., 2017a, 2017b; Ukkola et al., 2021;
Liu et al., 2024a, 2024b).

Although our study primarily concentrates on the MODIS era with
consistent satellite records, our conclusion that 2020 was the greenest
year is supported by the newly released long-term AVHRR NDVI (Li
et al., 2023b) and LAI (Cao et al., 2023) data, and the recent update of
MODIS NDVI (Li et al., 2024), extending the observation period from
1982 to 2023. The exceptional greening of the Earth in 2020 represents a
significant milestone in global vegetation’s response to environmental
changes. However, predicting the duration of this greening trend re-
mains challenging, given the complex interplay of various drivers and
the uncertainty of future climate scenarios (Zhao et al., 2020). Several
factors, such as reduced carbon fertilization due to nitrogen limitation

(Wang et al., 2020), saturated water use efficiency due to increased
vapor pressure deficit (Li et al., 2023a), intensified physiological
drought from soil and atmospheric water stress (Novick et al., 2016; Li
et al., 2023c), and enhanced anthropogenic disturbances (Miles and
Kapos, 2008; Jones et al., 2018), could potentially slow down or even
reverse this greening trend (Winkler et al., 2021; Liu et al., 2023a,
2023b). Notably, current global VI products still have uncertainties and
exhibit inconsistent global vegetation signals, particularly at the inter-
annual scale (Fig. S1). These discrepancies can arise from various fac-
tors, such as differences in VI features, sensor stability and calibration,
algorithmic processing, and the methods used for gap-filling and cloud
contamination correction (Jiang et al., 2017; Zhang et al., 2017a,
2017b). Continuously monitoring terrestrial vegetation dynamics at
finer spatial and temporal scales (Xiao et al., 2021), while minimizing
observation uncertainties (Zhang et al., 2017a, 2017b; Zeng et al.,
2023), is essential for us to gain a comprehensive understanding of the
health and sustainability of global vegetation.

Human-induced greenhouse gas emissions since the Industrial Rev-
olution are widely recognized as the primary cause of the global climate
crisis (Masson-Delmotte et al., 2021). The COVID-19 pandemic, as an
indirect effect, led to an unprecedented reduction in these emissions due
to global shutdowns and travel restrictions (Onyeaka et al., 2021). A key
implication of our study is that the remarkable greening observed in
2020 could serve as an emerging constraint on the increase in global
total carbon uptake by terrestrial vegetation through photosynthesis
(Zhang et al., 2019b), offering insights into the stability and possible
shift of the land carbon sink in one of the warmest recorded years (Duffy
et al., 2021; García-Palacios et al., 2021). It will, in turn, enhance our
understanding of the Earth’s response to short-term greenhouse gas re-
ductions during the pandemic (Lamboll et al., 2021) and aid in evalu-
ating the accuracy of current models and observations in closing the
Global Carbon Budget (Friedlingstein et al., 2022). Moreover, the sub-
stantial greening Earth in 2020 may be linked with the pulse of global
water cycle by enhancing water consumption through transpiration
(Yang et al., 2023) and further affecting reginal energy balances (Chen
et al., 2020). The potential impacts and broader implications of these
processes warrant further investigation. Finally, our multi-source
remote sensing- and EML-based modeling and control attribution
framework, along with the feasible anomaly decomposition methodol-
ogy, can be readily used and serve as supplementary approaches for
analyzing other climate essential variables2.

5. Conclusions

Our study identified a notable peak in global vegetation greening in
2020 since the early 2000s using multi-source remote sensing indicators
(EVI, SIF and LAI). Based on the anomaly signal decomposition,
ensemble machine learning and process models from TRENDY, we found
that the observed greening in 2020 was predominantly driven by
increased tropical vegetation growth from enhanced rainfall, and
further by a broader, long-term greening in boreal and temperate re-
gions, linked with CO2 fertilization, climate warming and reforestation.
Despite the pandemic of COVID-19 lockdowns reducing air pollution
and human disturbances, our study based on EML and COVID-MIP
indicated that their overall impact on global vegetation anomaly in
2020 was limited. The exceptional greening observed in 2020 highlights
the remarkable resilience and adaptability of global vegetation to
environmental changes. However, forecasting the trajectory of this
greening trend remains challenging due to the complex interactions
among climate, vegetation and human activities. Continuous monitoring
and advanced data-model fusions are essential to understand global
vegetation dynamics and ecosystem health, thus informing effective
climate mitigation strategies through optimized ecosystem

2 https://gcos.wmo.int/en/essential-climate-variables/.
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