Algorithmic modifications to the Jacobi-Davidson parallel
eigensolver to dynamically balance external CPU and memory load *

Richard Tran Mills | Andreas Stathopoulos ' Evgenia Smirni '

February 13, 2001

Abstract

Clusters of workstations (COWs) and SMPs have become popular and cost effective means
of solving scientific problems. Because such environments may be heterogenous and/or time
shared, dynamic load balancing is central to achieving high performance. Our thesis is that new
levels of sophistication are required in parallel algorithm design and in the interaction of the
algorithms with the runtime system. To support this thesis, we illustrate a novel approach for
application-level balancing of external CPU and memory load on parallel iterative methods that
employ some form of local preconditioning on each node. There are two key ideas. First, because
all nodes need not perform their portion of the preconditioning phase to the same accuracy,
the code can achieve perfect load balance, dynamically adapting to external CPU load, if we
stop the preconditioning phase on all processors after a fixed amount of time. Second, if the
program detects memory thrashing on a node, it recedes its preconditioning phase from that
node, hopefully speeding the completion of competing jobs and hence the relinquishing of their
resources. We have implemented our load balancing approach in a state-of-the-art, coarse grain
parallel Jacobi-Davidson eigensolver. Experimental results show that the new method adapts its
algorithm based on runtime system information, without compromising the overall convergence
behavior. We demonstrate the effectiveness of the new algorithm in a COW environment under
(a) variable CPU load and (b) variable memory availability caused by competing applications.

1 Introduction

In the heart of many scientific and engineering applications lies the numerical solution of either a
system of linear equations, Az = b, or of an eigenvalue problem, Az = Az. Advances in compu-
tational modeling and computer technology allow scientists to tackle increasingly larger problems
for which the matrices (A) are very large. Iterative methods are the only means of dealing with
these problems, and therefore they constitute a critical module of scientific software libraries and
problem solving environments. Typically, they are used with a preconditioning technique to im-
prove convergence rate and robustness. Parallel computing is also recognized as a powerful way

*Work supported by the National Science Foundation through Grants No. EIA-9974992 and No. EIA-9977030
"Department of Computer Science, College of William and Mary, Williamsburg, Virginia 23187-8795,
(rtm/andreas/esmirni@cs.wm.edu).

of improving execution time and solvable problem size of these applications. However, the perfor-
mance of existing methods falls short of the capabilities of today’s hardware platforms for scientific
computing, especially clusters of workstations (COWSs) and symmetric multi-processors (SMPs).

Traditional fine grain implementations of iterative methods, because of their highly synchronous
nature, present a scalability hurdle especially in clusters with high overhead networks. A popular
way of increasing granularity is to compute a more expensive but more accurate and parallelizeable
preconditioner. Domain decomposition is a typical example, where the local domains on each
processor are solved independently [26]. In [27], we have described an alternative approach that
combines both coarse and fine grain in a parallel, block Jacobi-Davidson eigenvalue solver. Each
processor gathers a different vector from the block on which it applies the preconditioning step
independently, thus improving granularity and scalability. The underlying assumption is that
individual nodes in clusters of workstations and of SMPs have access to the whole matrix A. This
is often the case, not only because of increasing memory sizes, but especially because many matrix-
free applications need only a matrix-vector multiplication function.

Beyond issues that are internal to parallel iterative methods, scalability is often inhibited by the
ubiquity of resource imbalances on heterogeneous and/or distributed shared environments, such as
COWSs and SMPs. Cost efficiency suggests not only the sharing of common resources but also space-
and even time-sharing among multiple users. Iterative methods can become the bottleneck of bigger
applications running on these platforms, because they cannot utilize effectively the dynamically
changing resources. On the other hand, scheduling parallel programs on shared environments is
also intrinsically difficult, because the system cannot predict the variable requirements of programs
[11]. There is substantial, recent work on supporting infrastructure for such distributed systems
[15, 30, 14, 16]. However, to utilize resources efficiently, the program itself should be able to adapt
its algorithm while in execution, based on runtime system information.

In this paper, we present a methodology that allows a class of iterative algorithms to adapt on-
the-fly to changing system conditions. Invariably, we shift the weight of convergence responsibility
from the outer, highly synchronous iteration to the local preconditioning phase. Because local
preconditioning operations need not be carried to the same accuracy on each processor, we can
achieve perfect load balancing by stopping the preconditioning phase on all processors after a fixed
amount of time has elapsed. This preconditioning flexibility can also be used to avoid memory
thrashing caused by external, memory intensive jobs. A process that detects thrashing recedes its
preconditioning phase from that node, hopefully speeding the completion of competing jobs and
hence the relinquishing of their resources. Typically, there is a trade-off between the parallelism
of the preconditioner and its ability to reduce the number of iterations. Through the appropriate
algorithmic modifications, our CPU and memory balancing strategies do not compromise and even
improve the overall convergence of the method.

A key issue is the application-centric view of system information for load and resource balancing.
Traditionally, system information has been used at the scheduler level, or at best at the outset
of a program for original problem partitioning and allocation of resources [1, 31]. With recent
performance monitoring and prediction libraries such as Network Weather Service [30], AppLeS
[2], and PAPI [3, 4], this information can be used dynamically to set appropriately the variable
granularity of our algorithms. In this paper, we demonstrate the effectiveness and robustness of our
approach even with simpler tools, on both a SUN and a Pentium-based COW. Our experiments

indicate that the new code efficiently balances the load and provides better throughput when it
competes for resources with both CPU- and memory-intensive jobs.

This paper is organized as follows. After a summary of related work in section 2, section 3
outlines the coarse-grain implementation of the Jabobi-Davidson solver. Section 4 presents our load
balancing balancing scheme, and describes a model for evaluating its performance. Experimental
results on the load balancing scheme follow in section 5. Section 6 presents the anti-thrashing
scheme, with experimental results following in section 7. Finally, section 8 provides concluding
remarks, and outlines future work.

2 Load balancing in heterogeneous and shared resource environ-
ments

A significant amount of research has been invested in methods and software for load balancing
scientific computing applications from within the application. Usually, the objectives are multiple
(for example, split the problem into equal subproblems and minimize communication) and always
they are resource and problem dependent. Yet, we can distinguish two main approaches.

The first approach assumes that the work per data item is known, and thus tries to equipartition
the data onto processors. This can be done statically with packages such as METIS or Chaco
[18, 17], during execution with repartitioning packages such as ParMETIS and Zoltan [20, 8], or
by diffusing data into less loaded processors [19]. The second approach assumes the amount of
work per data is variable and possibly unknown. In this case, the master-worker, or pool of tasks
paradigm provides good load balancing [13]. However, many applications do not fit naturally this
paradigm. Traditionally, these approaches, and especially the former one, have dealt only with load
imbalances internal to the application.

Computational Grids consisting of heterogeneous networks are rapidly becoming important
computing platforms for resource intensive parallel applications [15]. Besides CPU cycles, resources
include memory, network, storage, and even data. On COWSs and networks of SMPs effective
resource sharing among competing applications becomes critical for high performance. Schedulers
have been quite successful managing these resources under sequential workloads, but they still
cannot effectively cater for parallel programs with dynamically varying resource requirements [9,
10, 11]. Therefore, application level scheduling of resources is important [2]. However, little is known
in this direction, since current research has focused on providing interfaces to system information
and not on how to use it to dynamically change the algorithm for better resource utilization.

Although in principle the above load balancing approaches could take into account system load
information, there are two problems; first, repartitioning is often too expensive to be performed fre-
quently, and second, system information must be obtained accurately and inexpensively. Recently,
a variety of performance monitoring and prediction libraries such as Network Weather Service
(NWS) [30], and PAPI [3, 4] have been developed. NWS provides measurements and forecasts of
CPU and bandwidth on a heterogeneous network, while PAPI provides local processor information
(memory, CPU, paging, etc.). There is a small number of related, new projects focusing on mid-
dleware that allows the application to specify alternate configurations, and the system to manage
the shared resources accordingly [6, 7, 21]. AppLeS [2], relies on NWS to perform application level

scheduling, but currently only as an initial partitioning of the problem.

However, the above projects do not suggest ways of dynamic algorithmic modifications. In
addition, the few existing methods that use domain decomposition preconditioning as a means of
load balancing, focus mainly on small imbalances caused by the partitioner [23]. In this paper,
we present a different, unifying approach to numerical algorithms, parallelism, and system aware
implementations. Using inexpensive memory and CPU measurements, we achieve good resource
balancing, suggesting that a seamless interaction of the numerical application with the system is a
viable and effective solution.

3 Coarse grain Jacobi-Davidson implementation

We have chosen a recent implementation of a coarse-grain parallel, block Jacobi-Davidson iterative
eigensolver [27] as our driving application. However, any iterative method with independent, local
preconditioners on each processor is also a good candidate for this research.

Consider the standard eigenvalue problem Az; = Ajz;, where A is a large matrix, and a few
extreme (A}, z}) eigenpairs are required. For simplicity of presentation we assume A is symmetric.
Starting from an initial vector, the JD algorithm successively builds a basis for a space from where
the approximations of the eigenpairs are obtained, usually, by the Rayleigh-Ritz procedure [12].
The JD expands the basis by adding the approximate solution ¢; of the correction equation (1) for

some approximate eigenpair (Ritz pair) (\;, z;), with residual r; = (A — \;I)x;.
(I - :EleT)(A -)\iI)(I - xzxZT)e, =T (1)

A block version of the JD starts with a block of k initial vectors, and expands the basis by a block
of k vectors at a time. These vectors are the approximate solutions of k correction equations, each
for a different Ritz pair.

This algorithm is easily parallelizeable in a data parallel way. Each processor keeps a subset
of the rows for each long vector, requiring a global reduction (summation) for each inner product.
The user provides a parallel matrix vector multiplication and preconditioning operations. Below,
we outline the data parallel JD algorithm:

JD
V starting with k trial vectors, and let W = AV
While not converged do:

1. H=VTW (local contributions)

2. Global_Sum(H) over all processors.

3. Solve Hy; = \jy;, i = 1: k (all procs)

4. z; =Vy;, zi = Wy;,i =1:k (local rows)

5. r; =z — Nz, 1 = 1:k (local rows)

6. Correction equation Solve eq. (1) for each ¢;
7. Orthogonalize ¢;,4 =1:k. Add in V

8. Matrix-vector W, = AV,, i=1:k

end while

The easiest way to apply the (I — z;z]) projections in eq. (1) is to use an iterative method
for linear systems and perform the projections before and after the matrix vector multiplication.
In our implementation we use BCGSTAB because of indefiniteness of the systems, and because of
its short recurrence, which allows many steps without having to store a large number of vectors.
Preconditioners can be applied directly to the BCGSTAB for solving the correction equation.

Consider the situation where every processor has access to the entire matrix A. With in-
creasingly large memories available today, a 12-th order, 3-D finite difference matrix of 1 million
unknowns can be stored on a PC with 512 MB. But more importantly, many applications do not
store the matrix, providing instead a function for computing the matrix vector product. A typical
example comes from the area of materials science [29], where the matrix vector product consists of
two vector updates and two Fast Fourier Transforms. Another typical example is from the area of
Kronecker-based Markov chains [5]. The matrix is represented as the product of few, small vectors
that any processor can store.

Based on this observation we have developed a hybrid fine/coarse grain JD (JDcg) [27, 28].
With the matrix A available on all processors, the basis vectors V' of the JD are still partitioned by
rows. The main JD step (projection phase) is applied in the traditional fine grain fashion, oblivious
to the matrix redundancy. The coarse grain parallelism is induced by having each node gather all
the rows of one of the block vectors and apply the matrix vector product (and preconditioner) in
BCGSTAB independently from other processors (correction phase). The following is an example of
this coarse grain interface.

6. Coarse grain correction equation
All-to-all: send local pieces of x;,r; to proc i, receive a piece for x,,yiq, "myia from proc i
Apply m steps of (preconditioned) BCGSTAB on eq. (1) with the gathered ,,yid, "myid
All-to-all: send the i-th piece of €,,y;4 to proc 4, receive a piece for ¢; from proc i

Despite the expensive all-to-all communication, the power of this interface lies in the indepen-
dent solution of the correction equations. By increasing the BCGSTAB steps (m), more parallel work
occurs between communications, and thus, we can improve arbitrarily the parallel speedup of the
method. Typically, larger values of m and larger block sizes k& reduce the number of outer JDcg
iterations, but increase the total number of matrix-vector products, making the parallel algorithm
non work-conserving. However, large values of m are required for the solution of numerically hard
problems, and in addition this coarse granularity is ideal for hiding the latencies of slow networks.

4 Dynamic load balancing of JDcg

Traditional iterative methods are particularly susceptible to load imbalances because of the fine
grain partitioning and frequent synchronizations. For numerically hard problems, the vast majority
of the execution time of JDcg is spent in the correction phase. We can eliminate load imbalance
during this phase by limiting more heavily loaded processors to fewer iterations of BCGSTAB. Imbal-
ances persist during the brief projection phase, but the overall imbalances are virtually eliminated.
Some correction vectors ¢; are then computed to lower accuracy but this only increases the number
of outer JDcg iterations — in fact, it usually reduces the total amount of work. To ensure progress,

during the all-to-all communication the fastest processor gathers the most critical vector (e.g., the
extreme eigenvector), while the most loaded processor gathers the least critical one (innermost).

To obtain truly dynamic load balancing of the JDcg, we should cater for changes in the external
load during the correction phase. We achieve this by iterating BCGSTAB for a fixed time 7" rather
than for a predefined number of iterations m. For JD, it is often suggested that BCGSTAB is
iterated to a convergence threshold of 27%¢" where iter is the number of outer iterations [12].
In our method, T should correspond to the time needed by the fastest processor to perform the
required m iterations or meet the required convergence threshold for the most critical vector. To
estimate T" dynamically, we need first the following definitions:

e m is that “optimal number” of iterations that the fastest processor should compute.
e R, is the rate at which processor p performed iterations during the previous correction phase.

maz is the maximum number of iterations that a processor should compute.

T.n is the predicted time for the fastest processor to perform m iterations.

Tinaz is the predicted time for the fastest processor to perform the max iterations.

e iter is the number of outer (Jacobi-Davidson) iterations computed so far.

To set T, we need a rough estimate of how soon BCGSTAB will meet the required residual threshold.

Using the classical convergence bound for Conjugate Gradient [25] we correlate the optimal number

of iterations m with the 27%¢" threshold:

_ —uter
logy p’

where p = (v/k — 1)/(v/k + 1), and & the condition number of the matrix can be estimated from

the approximations of A4 and Ap,iy, available in JDcg. The algorithm proceeds as follows:

(2)

m

Load balancing of the correction phase

1. The first time through the correction phase, do no load balancing. Each processor computes
the number of iterations per unit time Iz,, and communicates its rate with all other processors.

2. For subsequent iterations, use the I, measured in the previous iteration to rank the processors
from fastest to slowest. A modified all-to-all communication then ensures that the slower
processors gather the residuals associated with the more interior eigenpairs.

3. Determine the optimal number of iterations m using (2) and broadcast it to all processors.
If m < maz, then each processor iterates for time T},
If m > maz, then each processor iterates for time T}, 4,

By design, the above algorithm achieves perfect load balance during the correction phase, be-
cause all processors spend an equal amount of time in it. In addition, it ensures that reducing the
load on some processors does not impede the convergence of the original algorithm, and often, as
shown in our experiments, it improves it.

4.1 A model for quantifying load imbalance

To evaluate our load balancing scheme, we need to quantify the total load imbalance. This can be
interpreted as the total number of wasted CPU cycles over all processors. For the JDcg process 1
running on processor 4, the total wall-clock time is:

T, =u; +c; +b;, where (3)
e u; is the total amount of CPU time (user time) spent on the JDcg process i,
e ¢; is the total amount of time spent by process 7 in communication,
e b; is the total amount of time wasted by process 7 due to load imbalance.

We assume any other system time to be negligible. The user time u; is measured simply by looking
at kernel counters (in most UNIX systems under the /proc pseudo-filesystem). The total load
imbalance over all processors is then B = > * | b;. Summing both sides of eq. (3) we obtain:

p

B=) (Ti—u) - Y ci (4)

=1 =1

It is thus sufficient to obtain a method for measuring the total communication time C' = >"_, ¢;.
For measuring C', we run an experiment on a non loaded system. The total wall clock time W;,
the user time w;, and the communication time g; are now different for each process, and it holds:

Wi = w; + g;.

In this case, the total time spent in communication is measurable: G = Y2 | g; = > (W; —w;).

Note that the individual communication operations take the same time as with the loaded
system (assuming the external load is not network intensive). Thus, although the number of JDcg
iterations changes (and thus the g;’s), the communication time per iteration does not depend on
load. Therefore, we have the equality:

G C

it€Tnonloaded B iterloaded‘
By substituting into eq. (4), we can compute the total load imbalance:
P iter
B =T —) — —llooded (5)

i1 1teTponloaded

5 Experimental evaluation

To evaluate the performance of our load balancing scheme, we conducted a series of experiments
in which we loaded processors with additional “dummy” jobs that that perform CPU intensive
computations. The experiments were run on four Sun Ultra-5 Model 333 machines with 256 MB of

Without load balancing With load balancing
Load || Its | Mvecs | Time | % Imbal || Its | Mvecs | Time | % Imbal
1-1-1-1 || 19 | 9813 | 1745 4.3 18 | 9205 | 1666 3.8
2-1-1-1 || 19 | 9813 | 3509 38.5 19 | 8517 | 1783 5.6
2-2-1-1 || 19 | 9813 | 3526 26.4 19 | 7381 | 1788 4.4
2-2-2-1 || 19 | 9813 | 3599 15.5 21 | 6941 | 1997 3.6

Table 1: Performance when finding the smallest eigenpair of NASASRB on a system subject to various
static external loads.

RAM, connected via switched fast Ethernet. Two large, sparse, symmetric test matrices available
from MatrixMarket! were used. The first matrix is NASASRB, of dimension 54870 with 2677324
non zero elements, and we seek the lowest eigenvalue. Because the lowest eigenvalues of NASASRB
are highly clustered, this is a difficult computation requiring a large number of iterations in the
correction phase (we use maz = 150). The second matrix is S3SDKQ4M2, of dimension 90449 with
2455670 non zero elements, and we seek the largest eigenvalue. This is an easier problem requiring
only a small number of iterations in the correction phase (we use max = 20). For both cases, the
BCGSTAB is preconditioned with a local ILUT(0,20) preconditioner [24].

To validate our model for quantifying load imbalance, we also implemented a profiling in-
strumentation of the JDcg code, by timestamping the beginning and end of each communication
operation. By synchronizing the initial timestamps, this profiling allows us to determine precisely
where JDcg is spending its time and thus to quantify the amount of load imbalance incurred. Our
experiments have shown excellent agreement with our model. In addition, we have used these
timestamps in Matlab, to create a visual profile of the execution, with zooming capabilities.

5.1 Experiments with static external load

In the first set of experiments, we ran JDcg on a system subjected to static external machine loads.
Processors were loaded with additional dummy jobs that execute register-based computations in an
infinite loop. Tables 1 and 2 summarize the performance of JDcg on NASASRB and S3DKQ4M2,
respectively. In these tables, the column named “Load” indicates the number of jobs (including
the JDcg) on each processor. For example, “2-2-1-1” indicates that two processors are running
an additional job. “Its” denotes the number of outer JDcg iterations, “Mvecs” the total amount
of matrix-vector multiplications, “Time” the total wall clock time in seconds, and “% Imbal” the
percentage of the time wasted in load imbalance over the total time for the application (i.e., B/ > T;
from eq. (5)).

The results for both NASASRB and S3DKQ4M2 show that the load balancing scheme dramati-
cally reduces the overall load imbalance and cuts the execution time in half, even when the system is
heavily loaded as in the 2-2-2-1 case. Notice that in the load balanced cases, the experiments with
NASASRB display somewhat less load imbalance than the experiments with S3DKQ4M?2. This
is because S3DKQ4M2 requires fewer BICGSTARB iterations in the correction phase, and hence
spends a greater proportion of time in the projection phase, which is not load balanced. Note also

'http://math.nist.gov/MatrixMarket

Without load balancing With load balancing
Load || Its | Mvecs | Time | % Imbal || Its | Mvecs | Time | % Imbal
1-1-1-1 || 24 | 1959 601 4.0 25 | 1921 564 5.5
2-1-1-1 || 24 | 1959 | 1096 38.0 25 | 1720 601 8.3
2-2-1-1 || 24 | 1959 | 1120 27.4 28 | 1686 712 10.4
2-2-2-1 || 24 | 1959 | 1121 15.5 35 | 1706 892 10.4

Table 2: Table 2: Performance when finding the largest eigenpair of S3DKQ4M2 on a system subject to
various static external loads.

that going from the 2-1-1-1 to the 2-2-1-1 to the 2-2-2-1 cases, the percentage of load imbalance
in the non load balanced code decreases: fewer free processors wait for the loaded ones, and thus
fewer CPU cycles are wasted. With load balancing, the imbalance stays relatively constant.

Notice that the amount of work performed (in terms of matrix-vector multiplications) decreases
when load balancing is used on an externally loaded system. This is because block methods tend to
increase the total number of work, especially if the correction equation for the innermost eigenpairs
is solved more accurately. By assigning the innermost eigenpairs to the more loaded processors,
our algorithm becomes more work conserving, resulting in faster convergence.

5.2 Experiments with dynamic external load

In a time-shared environment, one is likely to encounter load imbalances that are dynamic in
nature. In our second set of experiments, we run JDcg on a system subjected to come-and-go
external loads. Each processor is loaded with an additional dummy job which executes an endless
loop that sleeps for a random amount of time and then performs register based computations for
a random amount of time. The duration of the sleep and computation phases are sampled from
exponential distributions with means A and p seconds, respectively.

Tables 3 and 4 summarize our results for matrices NASASRB and S3DKQ4M2 respectively.
Since the behavior of the dummy jobs varies between experiments, we run ten trials for each set of
parameters, and we report the averages of the timings and the observed standard deviation. The
load balancing scheme works also well in the presence of a dynamic load imbalance. Performance
of the the scheme generally worsens as A and p decrease. This is not surprising, because as the
average duration of the computation done by the dummy jobs decreases, the ability to forecast
the speed of a node based on its performance during the previous correction phase is lessened.
However, because our scheme forces each processor to spend the same amount of time 7' in the
correction phase, this lessened ability does not result in poor load balancing, but only worse overall
convergence because of poorer estimation of an optimal value of T'.

6 Avoiding memory thrashing from within the algorithm

The above load balancing technique works well when the external load is a CPU intensive job. How-
ever, in many cases jobs contend for another limited resource; memory. If the memory requirements
of two applications far exceed the memory available on a processor, a significant amount of CPU

Without load balancing With load balancing
A 1 Time % Imbal Its Mvecs Time % Imbal
400 | 400 || 3135 (141) | 23.6 (3.1) || 21.0 (1.3) | 8586 (486) | 2094 (192) | 5.4 (1.0)
300 | 300 || 3256 (165) | 25.9 (2.3) | 21.8 (1.1) | 8800 (568) | 2161 (160) | 5.2 (0.5)
200 | 200 || 3094 (107) | 25.4 (1.7) || 21.5 (1.4) | 8873 (531) | 2122 (189) | 5.5 (0.8)
200 | 100 || 2778 (115) | 23.5 (1.5) | 20.9 (1.1) | 9250 (569) | 2010 (124) | 4.8 (0.4)
100 | 200 || 3356 (113) | 21.1 (1.4) || 22.7 (0.7) | 9019 (328) | 2539 (191) | 6.4 (0.9)
100 | 100 || 2977 (185) | 21.6 (1.8) || 22.6 (0.9) | 9448 (486) | 2313 (86) | 5.5 (0.6)

Table 3: Performance averages and their standard deviations (in parenthesis) for 10 different runs on
NASASRB with come-and-go dummy jobs on each node. Dummy jobs execute a loop in which they sleep for
v seconds and then perform computations for £ seconds. v’s and &’s are sampled from exponential probability
distributions with averages A and u, respectively. In cases without load balancing, 19 outer iterations and

9813 matrix-vector multiplications are always performed.

Without load balancing With load balancing
A 1 Time % Imbal Its Mvecs Time % Imbal
200 | 200 || 1074 (38) | 25.2 (3.0) | 28.6 (1.3) | 1731 (37) | 732 (46) | 10.3 (0.9)
100 | 100 || 1028 (58) | 25.6 (3.4) || 28.5 (2.8) | 1735 (58) | 733 (100) | 9.9 (1.9)
100 | 50 866 (67) | 24.0 (3.8) || 27.8 (1.6) | 1800 (86) | 684 (42) | 10.3 (1.4)
60 | 60 || 1018 (47) | 25.2 (1.8) || 29.3 (1.2) | 1775 (59) | 751 (43) | 10.1 (1.3)
50 | 100 || 1089 (32) | 21.0 (1.8) || 30.2 (3.0) | 1792 (141) | 857 (100) | 10.3 (1.7)
30 | 30 974 (45) | 23.6 (1.7) || 30.4 (4.3) | 1861 (196) | 776 (132) | 10.4 (2.3)

Table 4: Performance averages and their standard deviations (in parenthesis) for 10 different runs on
S3DKQ4M2 with come-and-go dummy jobs on each node. Dummy jobs execute a loop in which they sleep
for v seconds and then perform computations for ¢ seconds. ~’s and &’s are sampled from exponential
probability distributions with averages A and u, respectively. In cases without load balancing, 24 outer

iterations and 1959 matrix-vector multiplications are always performed.

10

cycles is wasted into paging. Moreover, if the applications have non local memory access patterns,
the vast majority of CPU cycles is wasted in thrashing. Although load balancing smoothes the
differences between processors, it cannot reclaim cycles lost to swapping.

6.1 A strategy to minimize thrashing

To improve the performance of the load balanced JDcg in the presence of external, memory-intensive
jobs, we have implemented a heuristic based on the following simple idea. If thrashing occurs, JDcg
recedes on that node during the correction phase, performing no BCGSTAB iterations for a fixed
period of time. The goal is to allow the other application to use 100% of the CPU/memory, hoping
it finishes earlier and relinquishes the resources.

For this idea to be effective, the lifetime of the competing job should be less than our appli-
cation. One could use various performance predictive models and tools [2, 30] for obtaining such
estimations. In the absence of such predictors, an upper limit is set on how long JDcg stays backed
off, before it resumes. However, it is important to note that unlike sequential or synchronous par-
allel jobs, our load balanced JDcg does converge, even if this anti-thrashing strategy “starves” the
correction phase on one processor, because other processors assume the convergence task.

On entering the correction phase, our anti-thrashing algorithm checks to see if thrashing was
occurring during the just completed projection phase. If so, the algorithm sleeps for T4 seconds.
The choice of T4 is discussed later. After this period, the algorithm checks whether it is appro-
priate for it to resume with the correction equation or to continue sleeping. This can be repeated
until the time elapsed since the start of the correction phase exceeds the maximum allotted time T,
and all nodes must return to the projection phase. Once/if the BCGSTAB is started, the algorithm
checks at every iteration whether thrashing is occurring and whether it needs to recede. The basic
steps of this algorithm are given in the following pseudocode description.

Anti-thrashing modification of the correction phase
Reset the clock T4pseq = 0

L1: If (‘ Test for receding‘) then
repeat sleep (Tiyqit)

until (‘ Test for resuming‘)

endif
while (T' > Tejgpseq + estimated time to complete a BCGSTAB iteration)
perform one BCGSTAB iteration

if (‘Test for receding‘) then goto L1

end

The efficiency of the algorithm depends on being able to answer reliably the two tests: (a) test
for receding if currently running, (b) test for resuming execution if in sleeping state. The tests
amount to accurately identifying system thrashing or predicting it before JDcg resumes execu-
tion. Although, our ultimate goal is to interface with performance measurement and prediction
middleware, in this paper we show that much can be achieved through simple system tools.

11

For the first test, JDcg recedes if both the page swap-out rate exceeds some certain threshold
(swap_threshold), and the CPU idling time (which includes idle and system time) is more than a
tolerable threshold (idle_tolerable). Neither of the two conditions alone are adequate. If the CPU
idles in the absence of paging, the culprit may be communication. If there is some paging, but little
CPU idling, there is not much to improve by backing our process off. Other possibilities exist (for
example testing page fault rates), but we found this test to be a very reliable indicator. Later in
this section, we discuss how to choose appropriate thresholds. A short algorithm follows:

Test for receding
Obtain the CPU idling percentage over the just completed computation phase: idle
Obtain the swap-out rate for the just completed computation phase: swapout
If (idle > idle_tolerable) AND (swapout > swap_threshold)
then return TRUE

Once JDcg is backed off, the test of whether to begin/resume BCGSTAB execution amounts to
predicting whether swapping JDcg back in memory would cause thrashing. The answer is easy
if the measured free memory on the node is enough for JDcg to run. However, low priority jobs
often occupy large chunks of memory, which they would release if asked by a higher priority job. A
typical example is the X server running on Linux PCs. For this reason, we also test if the system’s
idling time is high enough (more than idle_sufficient). The algorithm for the resuming test follows:

Test for resuming

If (Telapsed + Twait > T) then
return TRUE and exit the correction phase

else
Obtain the CPU idling percentage over the waiting period: idle
Obtain the current available free memory: free_mem
Obtain the current resident memory for JDcg: JD_res_.mem
Estimate the memory JDcg requires to avoid thrashing: JD_req_mem
If (idle > idle_sufficient) OR (JD_reg-mem — JD_res_mem < free_mem)

then return TRUE
endif

6.2 Choosing the parameters

The sleep time 7,4 must be short enough to be able to quickly respond to the system becoming
available when the contending job(s) finish, and thus minimize load imbalance. However, too short
a Tyeir may induce an unnecessary CPU load. We choose the longest T}, that yields a tolerable
load imbalance, when compared with the execution time for the correction phase T'.

The swap_threshold is more sensitive to the time interval that swapout is sampled from. Swap-
ping out of pages occurs in bursts, the frequency of which depends on the memory access pattern
of the jobs running. Ideally, the computation interval between the two measurements for swapout
should be larger than the burst interval. Alternatively, we can estimate the interval between bursts
tp, and accumulate the swapout rate over multiple measurements during the past ¢, seconds. Notice

12

that the presence of even low paging out, signifies that there is memory contention, and thus a
small swap_threshold is sufficient.

The parameter idle_tolerable should be the smallest rate of wasted cycles that our anti-thrashing
algorithm can reclaim efficiently. For example, an idling of 8% is not considered thrashing, and our
scheme may not succeed in improving it. However, a CPU idling percentage of 30% leaves more
room for our scheme to improve. The choice of idle_sufficient should be small enough that allows
lower priority jobs to be ignored, but also large enough that does not mistake as free a processor
idling because of thrashing. In our experience, a value between 80%-90% is sufficient. The required
memory JD_req-mem can be measured at runtime on a node that is not loaded.

Finally, the idling percentage (idle) and the (swapout) rate over a specified interval, as well as
the current amounts of free and resident JDcg memory on the code can be easily obtained through
the system counters available in the /proc pseudo-filesystem.

7 Memory intensive experiments

On the SUN platforms, we observed that the Solaris scheduler on each processor prevents thrashing
by arbitrarily “starving” one of the jobs. This policy is also documented in [22]. Although this
is expected to increase node throughput, it has not been designed with parallel jobs in mind. In
our application, the scheduler starves not only the correction but also the projection phase, thus
impeding the use of the other free processors.

For this reason, we have conducted our memory intensive experiments on a system of four 1
GHz Pentium III machines with 128 MB RAM running RedHat Linux 6.2. The machines are
interconnected via Fast Ethernet. Our test matrix is NASASRB for which JDcg requires about
67 MB of memory to run on an unloaded system. We pick JD_req_mem just below that value, equal
to 66 MB. For this test case, Tyqi: is chosen a hefty 20 seconds, and the swap_threshold is set to 150
KB/second. Both values are relatively conservative and may result in JDcg receding fewer times
than optimal.

In all our experiments JDcg solves the NASASRB on four nodes, from which node 0 is loaded
with a dummy job that alternates between sleeping and performing matrix vector multiplications.
We have found that a dummy job of size 80 MB is sufficient to consistently cause excessive swapping.
Furthermore, increasing this size does not increase the amount of swapping observed (since the
memory access pattern of the dummy job for matrix-vector multiplication remains the same), so
we use that value in our experiments. The dummy job can be described as follows:

Code for dummy job:

Wait 60 seconds to allow JDcg to initialize.
Create a vector v and a random, dense matrix A of size 80 MB
For 1 =1 to lim do

For 7 =1 to nmv do

b= Av

End for

Sleep for A seconds.
End for

13

Without anti-thrashing With anti-thrashing
A | nmo | lim Its Mvecs Time Its Mvecs Time
n/a | 46 1 19.4 (0.9) | 8681 (714) | 1125 (175) || 19.6 (0.5) | 9625 (287) | 913 (27)
n/a | 93 1 19.6 (0.5) | 8202 (319) | 1256 (92) || 19.2 (0.8) | 9317 (516) | 928 (39)
30 3 4 19.6 (0.9) | 9011 (654) | 1004 (89) | 19.0 (0.0) | 8820 (108) | 961 (46)
60 7 3 20.4 (0.9) | 9088 (649) | 1136 (98) || 19.6 (0.9) | 9088 (222) | 943 (15)
60 15 2 20.6 (1.3) | 9136 (812) | 1157 (131) || 19.6 (0.5) | 9199 (416) | 946 (49)

Table 5: Performance of the anti-thrashing scheme for NASASRB with come-and-go memory intensive
dummy job on one node. The tests for receding/resuming in the anti-thrashing algorithm are performed
through system measurements. The dummy job performs lim repetitions of nmwv matrix vector multiplications
with an 80MB matrix, sleeping for exactly A seconds between each pass.

The lim passes through the outer loop can be viewed as the number of jobs to execute in a
come-and-go fashion. The inner loop is the actual computational job that completes nmwv matrix
vector multiplications. The deterministic parameter A specifies the amount of time in seconds to
wait before repeating the inner loop. Unlike in the experiments described in previous sections, it is
necessary to use a dummy job that does a specified amount of work and then stops, because the idea
of the anti-thrashing scheme is to speed up JDcg by speeding up the completion of memory intensive
jobs that compete with it. Thus, we choose values of nmuv and lim so that the dummy job completes
its work within the lifetime of the JDcg without the anti-thrashing scheme. Table 5 summarizes
our results. We report averages over five runs and their standard deviations in parentheses.

Our experiments show that the anti-thrashing scheme gives an appreciable performance gain,
often reducing total execution times by about 20% over the original load balanced code. To put
these improvements into perspective, we should mention that the original load balanced JDcg often
mimics the anti-thrashing scheme, by iterating only once in the correction phase, which makes
the 20% improvements even more commendable. Obviously, the non load balanced code is simply
not viable in such situations, with some of our experiments showing about 2 orders of magnitude
performance degradation.

The performance of our scheme depends on its ability to decide when to recede or to resume. To
evaluate how accurately our tests are answered and to obtain an upper bound on what this scheme
can do, we test against an “ideal” version of our application. Rather than using system parameters
to determine if the system is thrashing, we make the dummy job create a specific file when it starts
computing and delete it after it finishes. Thus, the tests for receding and resuming execution in the
JDcg reduce to simply checking if a file exists, providing for our test problem the most accurate
system information. Our results are summarized in Table 6. Comparing these “ideal” results to
those in Table 5, we see that the performance is essentially the same.

An important characteristic of the anti-thrashing scheme is that, besides improving the JDcg
execution time, it also increases system throughput. The reduction in execution time for the dummy
job can be impressive, as shown in Table 7.

One might be concerned with how our scheme performs when the competing memory-intensive
application outlives JDcg. In this case, the scheme cannot reduce the runtime of JDcg, and could
conceivably even degrade performance, because a node that is thrashing will never do any BCGSTAB

14

With anti-thrashing
A | nmo | lim Its Myvecs Time
n/a | 46 1 20.2 (1.1) | 9936 (651) | 942 (71)
n/a | 93 1 19.4 (0.5) | 9233 (313) | 920 (39)
30 3 4 19.5 (0.6) | 9346 (323) | 970 (48)
60 7 3 19.6 (0.9) | 9414 (461) | 917 (42)
60 15 2 20.0 (0.7) | 9774 (440) | 961 (45)

Table 6: Performance of the “ideal” anti-thrashing scheme for NASASRB with come-and-go memory in-
tensive job on one node. The JDcg knows exactly when the system is thrashing by communicating directly
with the dummy job.

without anti-thrashing | with anti-thrashing | with ideal testing
A | nmou | lim Time Time Time
n/a | 46 1 736 (409) 113 (17) 140 (15)
n/a | 93 1 1055 (129) 187 (22) 202 (26)
30 3 4 554 (66) 223 (73) 171 (40)
60 7 3 808 (97) 152 (50) 141 (19)
60 15 2 864 (150) 158 (20) 141 (22)

Table 7: Improvements on execution time of the dummy job because of increased processor throughput due
to our anti-thrashing scheme.

iterations. We performed a few experiments with dummy jobs that outlive JDcg, and did not notice
any measurable performance degradation. In fact, the execution time with the anti-thrashing
scheme was similar to the time obtained without the anti-thrashing scheme. This is because when
the load balanced JDcg runs on a node that is thrashing, typically the node is so slow that it only
completes one BCGSTAB iteration per correction phase. Reducing this number to zero with the
anti-thrashing scheme does not have a noticeable effect on the JDcg convergence. However, this
scheme significantly benefits the overall system throughput.

8 Conclusions and future directions

We have provided application-level CPU and memory load balancing techniques that utilize runtime
system information to dynamically modify and tune the correction phase of the Jacobi-Davidson
eigensolver. Our load balancing experiments show that our method significantly reduces execution
time and minimizes load imbalance on time-shared COWs with external CPU load. The method is
robust under a variety of static and dynamic workloads, without compromising numerical conver-
gence. Also, the overhead for obtaining the system information is negligible. Our anti-thrashing
scheme uses similar system information to accurately determine the thrashing status on a node,
and recede its execution appropriately. In our experiments, this scheme consistently reduces the
running time for the JDcg code by 10-20%, and it dramatically improves processor throughput. Tt
has also demonstrated robustness regardless of the length or size of the external memory intensive

15

jobs, suggesting wide applicability.

Using system information to dynamically modify and optimize the runtime execution of an algo-
rithm is a relatively new approach, and many issues remain unanswered. The use of state-of-the-art
performance measuring libraries (such as PAPI or NWS) may be useful in improving the accuracy
of our system predictions, which would allow algorithmic modifications for longer scales. Other
shared resources may also be of interest, such as network load. An obvious extension of the above
techniques is to the FGMRES method for solving linear systems of equations. The issues involved
are surprisingly similar to the JDcg. Finally, we would like to implement the resource balancing
techniques to more traditional local preconditioners such as domain decomposition. Despite the
computational similarity, maintaining the numerical convergence of the method is more involved.

Acknowledgement

We would like to thank James R. McCombs for helping in the earlier stages of this work and
for providing the code and continuing support of the coarse grain implementation of the Jacobi-
Davidson method.

References

[1] F. Berman and R. Wolski. Scheduling from the perspective of the application networks. In
5th IEEE Inlt. Symp. on High Performance Distributed Computing, 1996.

[2] F. Berman, R. Wolski, S. Figueira, J. Schopf, and G. Shao. Application level scheduling on
distributed heterogeneous networks. In Supercomputing 1996, Fall 1996.

[3] S. Browne, J. Dongarra, N. Garner, G. Ho, and P. Mucci. A portable programming inter-
face for performance evaluation on modern processors. In The International Journal of High
Performance Computing Applications, volume 14, pages 189-204, Fall 2000.

[4] S. Browne, J. Dongarra, N. Garner, K. London, and P. Mucci. A scalable cross-platform

infrastructure for application performance tuning using hardware counters. In Supercomputing
2000, November 2000.

[5] P.Buchholz, G. Ciardo, P. Kemper, and S. Donatelli. Complexity of memory-efficient kronecker
operations with applications to the solution markov models. INFORMS Journal on Computing,
13(3):203-202, 2000.

[6] P. Chandra, Y.-H. Chu, A. Fisher, J. Gao, C. Kosak, T.S. Eugene Ng, P. Steenkiste, E. Taka-
hashi, and H. Zhang. Darwin: Customizable resource management for value-added network
services. 15(1), 2001.

[7] F. Chang and V. Karamcheti. Automatic configuration and run-time adaptation of distributed
applications. In 9th IEEFE Inlt. Symp. on High Performance Distributed Computing, August
2000.

16

8]

[19]

[20]

[21]

22]

23]

K. Devine, B. Hendrickson, E. Boman, M. St.John, and C. Vaughan. Zoltan: A dynamic
load-balancing library for parallel applications; user’s guide. Technical Report Tech. Rep.
SANDY9-1377, Sandia National Laboratories, Albuquerque, NM, 1999.

D. G. Feitelson and L. Rudolph, editors. 1998 Workshop on Job Scheduling Strategies for
Parallel Processing, volume 1457. LNCS, 1998.

D. G. Feitelson and L. Rudolph, editors. 1999 Workshop on Job Scheduling Strategies for
Parallel Processing, volume 1659. LNCS, 1999.

D. G. Feitelson and L. Rudolph, editors. 2000 Workshop on Job Scheduling Strategies for
Parallel Processing, volume 1911. LNCS, 2000.

D. R. Fokkema, G. L. G. Sleijpen, and H. A. van der Vorst. Jacobi-Davidson style QR and
QZ algorithms for the partial reduction of matrix pencils. SIAM J. Sci. Comput., 20(1), 1998.

I. Foster. Designing and Building Parallel Programs. Addison Wesley, 1995.

I. Foster and C. Kesselman. Globus: A metacomputing infrastructure toolkit. International
Journal of Supercomputer Applications, 11(2):115-128, 1997.

I. Foster and C. Kesselman, editors. The Grid — Blueprint for a New Computing Infrastruc-
ture. Morgan Kaufmann, 1998.

A. S. Grimshaw and W. A. Wulf et al. The Legion vision of a worldwide virtual computer.
Communications of the ACM, 40(1), 1997.

B. Hendrickson and R. Leland. The Chaco useer’s guide, Version 1.0. Technical Report
SAND92-1460, Sandia National Laboratories, Albuquerque, NM, 1992.

George Karypis and Vipin Kumar. METIS: unstructured graph partitioning and sparse matrix
ordering system. Technical report, Department of Computer Science, University of Minnesota,
Minneapolis, 1995.

George Karypis and Vipin Kumar. Multilevel diffusion schemes for repartitioning of adaptive
meshes. Journal of Parallel and Distributed Computing, 47:109-124, 1997.

George Karypis and Vipin Kumar. A parallel algorithm for multilevel graph partitioning and
sparse matrix ordering. Journal of Parallel and Distributed Computing, 48:71-85, 1998.

P. Keleher, J. Hollingsworth, and D. Perkovic. Exploiting application alternatives. In 19th
Intl. Conf. on Distributed Computing Systems, June 1999.

Jim Mauro and Richard McDougall. SOLARIS Internals, Core Kernel Architecture. Prentice
Hall PTR, 2001.

Y. Saad and M. Sosonkina. Non-standard parallel solution strategies for distributed sparse
linear systems. In A. Uhl P. Zinterhof, M. Vajtersic, editor, Parallel Computation: Proc. of
ACPC’99, Lecture Notes in Computer Science, Berlin, 1999. Springer-Verlag.

17

[24]

[25]
[26]

[27]

[30]

[31]

Yousef Saad. ILUT: a dual threshold incomplete ILU factorization. Numerical Linear Alge-
bra with Applications, 1:387-402, 1994. Technical Report 92-38, Minnesota Supercomputer
Institute, University of Minnesota, 1992.

Yousef Saad. Iterative methods for sparse linear systems. PWS Publishing Company, 1996.

Barry Smith, P. Bjorstad, and W. Gropp. Demain Decomposition: parallel multilevel methods
for elliptic partial differential equations. Cambridge University Press, 1996.

A. Stathopoulos and J. R. McCombs. A parallel, block, Jacobi-Davidson implementation for
solving large eigenproblems on coarse grain environments. In 1999 International Conference
on Parallel and Distributed Processing Techniques and Applications, pages 2920-2926. CSREA
Press, 1999.

A. Stathopoulos and J. R. McCombs. Parallel, multi-grain eigensolvers with applications to
materials science. In First SIAM Conference on Computational Science and Engineering, 2000.

A. Stathopoulos, Serdar ()gﬁt, Y. Saad, J. R. Chelikowsky, and Hanchul Kim. Parallel methods
and tools for predicting material properties. Computing in Science and Engineering, 2(4):19—
32, 2000.

R. Wolski, N. Spring, and J. Hayes. The network weather service: A distributed resource
performance forecasting service for metacomputing. Journal of Future Generation Computing
Systems, 15(5-6):757-768, 1999.

R. Wolski, N. Spring, and J. Hayes. Predicting the cpu availability of time-shared unix systems.
In 8th IEEE High Performance Distributed Computing Conference (HPDCS8), number also
UCSD TR: CS98-602, August 1999.

18

