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Who is this guy?

Biosketch:

I May 2017, joined staff in MCS/LANS. “Remote” employee based in Portland, OR
I January 2014—May 2017, HPC Earth System Models Architect at Intel

I Part of the Many Integrated Core (MIC) program developing Xeon Phi
I Co-design in weather, climate, and Earth system models

I August 2004—January 2014, Staff scientist at ORNL
I Started in NCCS/OLCF, moved to CSM, then Environmental Sciences Division
I Joint faculty appointment (departments of Earth and Planetary Sciences; Computer Science)

University of Tennessee, 2010—2014

I 2001—2004, DOE Computational Science Graduate Fellow, Dept. of Computer Science at
William and Mary. Practicum in Earth and Environmental Sciences Division, LANL

What am I known for?

I One of the original developers of PFLOTRAN (www.pflotran.org), massively parallel hydrologic
flow and reactive transport code.

I Long-time occasional (now full-time) contributor to PETSc development.

I Will largely avoid talking about either of these things today!
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Introduction to what I will talk about today

I Increasing availability of high-resolution geospatiotemporal data sets from varied sources:
I Observatory networks
I Remote sensing platforms
I Computational Earth system models

I New possibilities for knowledge discovery and mining of ecological data sets fused from disparate
sources.

I Traditional tools impractical for analysis/synthesis of data sets this large: Need new approaches to
utilize complex memory hierarchies and high levels of available parallelism in state-of-the-art
high-performance computing platforms.

I We have adapted pKluster—an open-source tool for accelerated k-means clustering we use for
many geospatiotemporal applications—to effectively utilize state-of-the art multi- and manycore
processors, such as the second-generation Intel Xeon Phi (“Knights Landing”) processor, as well
as GPGPUs.

I Have also developed a parallel PCA/SVD tool that complements some of our clustering-based
approaches.
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Talk Outline

1. Some history: The “Stone Soupercomputer” and quantitative ecoregion delineation

2. Optimizations to the pKluster parallel k-means code
2.1 “Accelerated” k-means using the triangle inequality
2.2 Optimizations for AVX2 and AVX-512 multi- and many-core CPUs

3. A geo-spatio-temporal application: Early warning system for threats to forest ecosystems
3.1 Cluster-based approaches
3.2 Principal components analysis (PCA)-based approaches

4. Extra credit (time and audience interest permitting):
Speculative application: Using machine-learning for “scale-bridging” in land surface hydrology
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Scalable k-means Clustering with pKluster
Our distributed-memory clustering code has a long history...

Figure: Originally developed in 1996–1997 for use on the Stone Soupercomputer, a very early Beowulf-style
cluster constructed entirely out of surplus parts (see “The Do-It-Yourself Supercomputer”, Scientific American,
265 (2), pp. 72-79, 2001.) 6 / 68



Original motivation: Replacing hand-drawn ecoregionalizations
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Level III Ecoregions of the Continental United States
(Revised April 2013)

National Health and Environmental Effects Research Laboratory
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57. Huron/Erie Lake Plains
58. Northeastern Highlands
59. Northeastern Coastal Zone
60. Northern Allegheny Plateau
61. Erie Drift Plain
62. North Central Appalachians
63. Middle Atlantic Coastal Plain
64. Northern Piedmont
65. Southeastern Plains
66. Blue Ridge
67. Ridge and Valley
68. Southwestern Appalachians
69. Central Appalachians
70. Western Allegheny Plateau
71. Interior Plateau
72. Interior River Valleys and Hills
73. Mississippi Alluvial Plain
74. Mississippi Valley Loess Plains
75. Southern Coastal Plain
76. Southern Florida Coastal Plain
77. North Cascades
78. Klamath Mountains/California
      High North Coast Range
79. Madrean Archipelago
80. Northern Basin and Range
81. Sonoran Basin and Range
82. Acadian Plains and Hills
83. Eastern Great Lakes Lowlands
84. Atlantic Coastal Pine Barrens
85. Southern California/Northern Baja Coast

 1.  Coast Range
 2.  Puget Lowland
 3.  Willamette Valley
 4.  Cascades
 5.  Sierra Nevada
 6.  Central California Foothills 
      and Coastal Mountains
 7.  Central California Valley
 8.  Southern California Mountains
 9.  Eastern Cascades Slopes and  
      Foothills
10. Columbia Plateau
11. Blue Mountains
12. Snake River Plain
13. Central Basin and Range
14. Mojave Basin and Range
15. Northern Rockies
16. Idaho Batholith
17. Middle Rockies
18. Wyoming Basin
19. Wasatch and Uinta Mountains
20. Colorado Plateaus
21. Southern Rockies
22. Arizona/New Mexico Plateau
23. Arizona/New Mexico Mountains
24. Chihuahuan Deserts
25. High Plains
26. Southwestern Tablelands
27. Central Great Plains
28. Flint Hills
29. Cross Timbers
30. Edwards Plateau
31. Southern Texas Plains
32. Texas Blackland Prairies
33. East Central Texas Plains
34. Western Gulf Coastal Plain
35. South Central Plains
36. Ouachita Mountains
37. Arkansas Valley
38. Boston Mountains
39. Ozark Highlands
40. Central Irregular Plains
41. Canadian Rockies
42. Northwestern Glaciated Plains
43. Northwestern Great Plains
44. Nebraska Sand Hills
45. Piedmont
46. Northern Glaciated Plains
47. Western Corn Belt Plains
48. Lake Agassiz Plain
49. Northern Minnesota Wetlands
50. Northern Lakes and Forests
51. North Central Hardwood Forests
52. Driftless Area
53. Southeastern Wisconsin Till Plains
54. Central Corn Belt Plains
55. Eastern Corn Belt Plains
56. Southern Michigan/Northern 
       Indiana Drift Plains

Ecoregions are areas where ecosystems (and the type, quality, and quantity of environmental resources) are generally 
similar. This ecoregion framework is derived from Omernik (1987) and from mapping done in collaboration with U.S. 
EPA regional offices, other Federal agencies, state resource management agencies, and neighboring North American 
countries (Omernik and Griffith 2014). Designed to serve as a spatial framework for the research, assessment, and 
monitoring of ecosystems and ecosystem components, ecoregions denote areas of similarity in the mosaic of biotic, 
abiotic, terrestrial, and aquatic ecosystem components, with humans considered as part of the biota. These ecoregions 
have been used to develop regional biological criteria and water quality standards, set management goals for nonpoint 
source pollution, assess land cover trends, report on ecosystem carbon sequestration, and frame wildlife conservation 
research, among other applications. 
Ecological regions can be identified by analyzing the patterns and composition of biotic and abiotic phenomena that 
affect or reflect differences in ecosystem quality and integrity (Omernik 1987, 1995). These phenomena include geology, 
physiography, vegetation, climate, soils, land use, wildlife, and hydrology. The relative importance of each characteristic 
varies from one ecological region to another regardless of the hierarchical level. A Roman numeral classification scheme 
has been adopted for different levels of ecological regions. Level I is the coarsest level, dividing North America into 15 
ecological regions; at Level II the continent is subdivided into 50 classes (CEC 1997, 2006). Level III, shown here, has 
105 ecoregions in the continental U.S. For the conterminous United States, the ecoregions have been further subdivided 
to 967 Level IV ecoregions. Details about the ecoregions or their applications are explained in reports and publications from 
the state and regional projects (e.g., Bryce et al., 1998, 2003; Chapman et al., 2001, 2006; Gallant et al., 1989, 1995; Griffith 
et al., 2004, 2009, 2014; McGrath et al., 2002; Omernik, 2004; Omernik et al., 2000; Thorson et al., 2003; Wiken et al., 
2011; and Woods et al., 1996, 2002, 2004). For additional information, contact James M. Omernik, USGS, c/o U.S. EPA, 
200 SW 35th Street, Corvallis, OR 97333, phone (541) 754-4458, email omernik.james@epa.gov; or Glenn Griffith, 
USGS, c/o US EPA, 200 SW 35th Street, Corvallis, OR 97333, phone (541) 754-4465, email ggriffith@usgs.gov.
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Quantitative Ecoregionalization through Multivariate Spatio(-Temporal) Clustering
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Quantitative Ecoregionalization through Time: Sampling Network Design

1000 km

(a) 10 ecoregions, present (2000-2009)

1000 km

(b) 10 ecoregions, future (2090-2099)

Figure: Geospatiotemporal clustering of a combination of observational data and downscaled general circulation
model results projects dramatic shifts in location of Alaska ecoregions using downscaled 4 km GCM results.
Arctic tundra projected to be at 0.78% of current extent by 2099. DOI: 10.1007/s10980-013-9902-0.
2014 US-IALE Outstanding Paper in Landscape Ecology.
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GSMNP LiDAR-derived canopy structure classification

Figure: Map (above) showing the 30 most-different
classes of vegetation canopy structure, as identified by
k-means clustering (right) for the Great Smoky
Mountains National Park.

https://www.climatemodeling.org/~jkumar/pubs/Kumar_ICDM_20151117.pdf
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Scalable k-means Clustering with pKluster

I When pKluster was initially written, on-node parallelism was virtually nonexistent on commodity
PCs; the focus was purely on distributed-memory parallelism.

I Because of extreme heterogeneity of the cluster, a master-slave parallel programming paradigm
was used (provides dynamic load-balancing).
I On modern systems, a fully-distributed, masterless approach may be more efficient.
I We work with the master-slave version here, because some techniques used here introduce load

imbalance even on homogeneous machines.

Features:

I Runs on any machine (or cluster) with C89 (or higher) C compiler and an MPI implementation.

I Option to improve cluster quality by moving or “warping” clusters that become empty to locations
in data space where points that are farthest from their current cluster centroids reside.

I Support for clustering observation vectors with many zero entries (e.g., species occurrence data).
I Fast! Suitable for clustering multi-terabyte data sets.

I Implements “accelerated” k-means algorithm.
I Optimizations for manycore CPU and GPGPU systems.
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Manycore Computing Architectures

I In recent years, the number of compute cores and hardware threads has been dramatically
increasing.

I Seen in GPGPUS, “manycore” processors such as the Intel Xeon Phi, and even on standard server
processors (e.g., Intel Xeon Skylake).

I There is also increasing reliance on data parallelism/fine-grained parallelism.
I Current Intel Xeon processors have 256-bit vector registers and support AVX2 instructions.
I Second-generation Intel Xeon Phi processors and Intel Skylake Server processors have 512-bit

vectors/AVX512 instructions.

At left, “Knights Landing” (KNL) Xeon Phi processor:
I Up to 36 tiles interconnected via 2D mesh

I Tile: 2 cores + 2 VPU/core + 1 MB L2 cache

I Core: Silvermont-based, 4 threads per core, out-of-order execution

I Dual issue; can saturate both VPUs from a single thread

I 512 bit (16 floats wide) SIMD lanes, AVX512 vector instructions

I High bandwidth memory (MCDRAM) on package: 490+ GB/s

bandwidth on STREAM triad2
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Benchmarking Platforms and Problem

Benchmark problem: GSMNP LiDAR clustering

I 1.5 million observations

I 74 coordinates

I k = 2000 clusters
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Parallel k-means clustering algorithm

I Centralized master-worker paradigm

I Start from some initial centroids (chosen offline)
I Master:

I Broadcasts centroids and aliquot assignment to
workers

I Collects new cluster assignments from workers
I Recomputes centroids

I Workers, for an assigned aliquot:
I Compute observation-to-centroid distances
I Assign each observation to closest centroid

Figure: Illustration of k-means iteration for
k = 3. https://commons.wikimedia.org/
wiki/File:K-means_convergence.gif
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Accelerated k-means clustering

I Classical k-means actually performs far more distance calculations than required!

I Use the triangle inequality to eliminate unnecessary point-to-centroid distance computations based
on the previous cluster assignments and the new inter-centroid distances.

I Reduce evaluation overhead by sorting inter-centroid distances so that new candidate centroids cj
are evaluated in order of their distance from the former centroid ci . Once the critical distance
2d(p, ci ) is surpassed, no additional evaluations are needed, as the nearest centroid is known from
a previous evaluation.

d(i , j) ≤ d(p, i) + d(p, j)
d(i , j)− d(p, i) ≤ d(p, j)
if d(i , j) ≥ 2d(p, i) :

d(p, j) ≥ d(p, i)
without calculating the distance d(p, j)
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Baseline (accelerated k-means) Performance

I 1.3X speedup on SKX vs.
BDW

I Significant slowdown
(2.2X) on KNL vs. BDW
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Effective Use of Hyperthreads

I Using a pure MPI approach (one MPI rank per core), performance of the accelerated k-means
clustering approach is surprisingly poor on the “Knights Landing” (KNL) processor.

I Using two MPI ranks per core slightly decreases time in the actual clustering calculation, but
slightly increases total time due to greater overhead in master-worker coordination.

I This suggests that using more available hardware threads can improve performance on KNL, if we
can avoid increasing master-worker overhead.

17 / 68



Performance Optimizations: OpenMP Parallelism on KNL

I Hybrid MPI-OpenMP
version of distance
calculation function
effectively utilizes FMA
units and reduces the
bottleneck on rank 0.

I Use dynamic loop
scheduling to smooth
load imbalance due to
triangle inequality (many
observations in an aliquot
might skip
point-to-centroid distance
calculation).

I Pin each MPI to a KNL
“tile” and spawn 8
threads (4 threads per
core).

I 2.8X improvement.
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Performance Optimizations: OpenMP Parallelism on BDW and SKX
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Improving computational intensity

I Can achieve greater computational intensity of the observation–centroid distance calculations by
expressing the calculation in matrix form:
I For observation vector xi and centroid vector zj , the squared distance between them is

Dij =
∥∥xi − zj

∥∥2
.

I Via binomial expansion, Dij = ‖xi‖2 +
∥∥zj∥∥2 − 2xi · zj

I The matrix of squared distances can thus be expressed as D = x1ᵀ + 1zᵀ − 2XᵀZ , where X and Z
are matrices of observations and centroids, respectively, stored in columns, x and z are vectors of the
sum of squares of the columns of X and Z , and 1 is a vector of all 1s.

I Above expression can be calculated in terms of a level-3 BLAS operation (xGEMM), followed by
two rank-one updates (xGER, a level-2 operation).

I We use highly optimized BLAS implementations from Intel’s MKL and NVIDIA cuBLAS to speed
up distance calculations on Xeon Phi and GPGPUs, respectively.

I Distance calculations using above formulation can be dramatically faster than the straightforward
loop over vector distance calculations when many distance comparisons must be made.

I Using the matrix formulation for distance comparisons in early k-means iterations is
straightforward; a more complicated approach we hope to explore is using the matrix formulation
in combination with the acceleration techniques described above, in which only a subset of
observation–centroid distances are calculated.
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Performance Summary

I BLAS formulation
provides the best
performance on KNL
(despite doing many more
distance calculations than
P2P calculations using
triangle-inequality
“acceleration”), slightly
slower then P2P distance
calculation on SKX.

I Overall performance
improvements:
I KNL: 3.5X
I BDW: 1.3X
I SKX: 1.4X
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Future Directions: pKluster Software Development

I Investigate hybrid approach combining accelerated k-means method and matrix formulation within
the same iteration.

I Re-implement a fully distributed, masterless approach in the current version of the code to handle
cases in which master-slave overhead is high (e.g., many cases on KNL).

I Add support for emerging high-capacity, non-volatile memory technologies.

I Supported open-source release under Apache License 2.0.
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Application: Early detection of forest threats via remote sensing
I Early identification of forested areas threatened by insects, disease, drought, or other agents can

be critical to preventing long-term or irreversible damage to forest ecosystems.
I > 600 million acres of forest/wildlands in the United States, so regularly monitoring any

significant fraction of these lands through aerial surveys and ground-based inspections is infeasible.
I Thus, many threats go unnoticed until it is too late to easily mitigate or correct them.
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Phenology

I Phenology is the study of periodic plant and animal life cycle
events and how these are influenced by seasonal and
interannual variations in climate.

I ForWarn is interested in deviations from the “normal” seasonal
cycle of vegetation growth and senescence.

I NASA Stennis Space Center has developed a set of National
Phenology Datasets based on MODIS NVDI.

I NDVI exploits the strong differences in plant reflectance
between red and near-infrared wavelengths to provide a
measure of photosynthetic capacity or “greenness” from
remote sensing measurements.

NDVI =
(σnir − σred)

(σnir + σred)
(1)

I NVDI ranges from −1 to 1; Dense vegetation cover is 0.3–0.8,
soils are about 0.1–0.2, surface water is near 0.0, and clouds
and snow are negative.

Up-looking photos of a scarlet oak showing the timing of leaf emergence in the spring.
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Prototypical NDVI (“Greenness”) Profile Over One Year
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MODIS MOD13 NDVI Product

I The Moderate Resolution Imaging Spectroradiometer (MODIS) is a key instrument aboard the
Terra (EOS AM, N→S) and Aqua (EOS PM, S→N) satellites.

I Both view the entire surface of Earth every 1 to 2 days, acquiring data in 36 spectral bands.

I The MOD 13 product provides Gridded Vegetation Indices (NDVI and EVI) to characterize
vegetated surfaces.

I Available are 6 products at varying spatial (231 m, 1 km, 0.05◦) and temporal (8-day, 16-day,
monthly) resolutions.

I The Terra and Aqua products are staggered in time so that a new product is available every 8
days.

I Results shown here are derived from the 8-day Aqua and Terra MODIS products at 231 m
resolution, processed by NASA Stennis Space Center.

26 / 68



The Forest Change Assessment Viewer

ForWarn is currently will soon resume providing interactive forest disturbance detection maps though
the U.S. Forest Change Assessment Viewer: http://forwarn.forestthreats.org/fcav

I Maps computed through raster map arithmetic
approaches: current NDVI compared with values from
some historical baseline.

I E.g., current maximum NDVI observed over a 24-day
window at a given location may be compared with the
maximum NDVI for the same location/window observed
over a set of previous years.
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Data-Mining Approaches to Threat Detection

I A difficulty with map-arithmetic approaches:
identification of appropriate parameters (maximum NDVI, 20% “spring” NDVI, etc.) to use, since
the appropriate choice of parameters may vary by region and/or type of disturbance.

I To complement such approaches, we desire automated, unsupervised approaches to determine
“normal” seasonal/inter-seasonal variation at each geographic location, using the full volume of
NDVI data (almost 400 GB in single precision).

I Some approaches we have had success with are based on k-means clustering (see ICCS/DMESS
2011 papers by Mills et al., Kumar et al.).
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Clustering the NDVI data set

I For each year and each grid cell in the CONUS, construct an observation vector of 46 NDVI
values representing the seasonal NDVI trace for that year/location.

I All observation vectors are combined into a data matrix with 46 columns and hundreds of millions
of rows (each year corresponds to 146.4 million rows; 25 GB of single-precision data per year).

I Data are standardized and then clustered using a highly-parallel k-means clustering code.

I Cluster assignments are then mapped back to each map cell and year from which each observation
came, yielding one map per year in which each cell is classified into one of k clusters or
“phenoclasses”.

I These can be viewed as forming a dictionary of prototypical annual NDVI traces.
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50 Phenoregions for year 2011 (Random Colors)
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50 Phenoregion Prototypes (Random Colors)

N
D

V
I

Phenology Centroid Prototypes (phendump.2000-2011, k = 50)

Cluster 31 Cluster 40 Cluster 28 Cluster 25 Cluster 10 Cluster 3 Cluster 2 Cluster 7 Cluster 22 Cluster 6

Cluster 4 Cluster 42 Cluster 5 Cluster 13 Cluster 41 Cluster 39 Cluster 15 Cluster 48 Cluster 21 Cluster 30

Cluster 11 Cluster 49 Cluster 46 Cluster 32 Cluster 45 Cluster 8 Cluster 47 Cluster 16 Cluster 26 Cluster 38

Cluster 27 Cluster 35 Cluster 29 Cluster 14 Cluster 20 Cluster 50 Cluster 37 Cluster 33 Cluster 12 Cluster 18

Cluster 36 Cluster 34 Cluster 24 Cluster 44 Cluster 1 Cluster 23 Cluster 43 Cluster 19 Cluster 9 Cluster 17

1 of 1

day of year
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50 Phenoregions Max Mode (Random Colors)
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Clustering-based disturbance detection

Disturbance or recovery can be detected by analyzing the history of phenoclass assignment. E.g.:

I Look for significant deviation from the statistical mode of cluster assignments for that location.

I Look for a large Euclidean “transition” distance between the currently assigned cluster centroid
and those from a prior year or years.
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Mountain Pine Beetle in Colorado for (2004 − 2003)
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Mountain Pine Beetle in Colorado for (2005 − 2003)
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Mountain Pine Beetle in Colorado for (2006 − 2003)
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Mountain Pine Beetle in Colorado for (2007 − 2003)
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Mountain Pine Beetle in Colorado for (2008 − 2003)
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PCA/SVD approaches for threat detection

I Our clustering-based approaches can flag a wide range of disturbances, particularly those involving
high mortality events such as fire, storms, or mountain pine beetle outbreaks.

I Slower-acting agents, such as hemlock woolly adelgid, that cause a gradual decline in forest health
are more difficult.

I Also, the annual phenology of some areas is highly influenced by interannual climate variability:
grasslands, for instance, experience rapid greenup after precipitation and do not have smooth
annual cycles.

I These areas tend to display a large transition distance from year to year even when there is
essentially no real change in the vegetation health.

I To remedy these shortcomings, we have been exploring the use of principal components analysis
(PCA) (or the related SVD) as a complementary approach.
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A complementary approach: Principal component analysis

Principal Components Analysis (PCA) determines, for a p-dimensional data set, an orthogonal set of p
new axes (linear combinations of the original p variables) such that the first axis explains the greatest
variance, the second explains the next most variance, and so on.

I Commonly used to determine dominant patterns in data
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Varimax-rotated loadings for top 3 components

Figure: The loadings (coefficients in the linear combination of the 46 original variables) along the three
varimax-rotated principal axes. The x-axis corresponds to the eight-day NDVI-acquisition windows and loadings
are shown on the y-axis.
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k = 1000 map for year 2000, similarity colored

Figure: Phenoclass assignment map for year 2000 with k = 1000. Similarity colors are used to indicate cluster
membership.
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A complementary approach: Principal component analysis

Principal Components Analysis (PCA) determines, for a p-dimensional data set, an orthogonal set of p
new axes (linear combinations of the original p variables) such that the first axis explains the greatest
variance, the second explains the next most variance, and so on.

I Commonly used to determine dominant patterns in data

I But can also be used to determine the anomalous patterns: Observations that score strongly on
low order components do not follow the correlation structure of the data.
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Parallel Principal Components Analysis Tool

I We have developed a prototype parallel tool to perform PCA.

I Rather than explicitly forming the covariance matrix, computes thin SVD of the adjusted data
matrix.

I Uses the Lawson-Hanson-Chan factorization to exploit the “tall and skinny” (m >> n) nature of
our matrices: (m >> n)
I Form reduced factorization A = QR (via parallel PLAPACK routine)
I Gather the matrix R to process 0.
I Process 0 calls LAPACK DGESVD to compute the SVD R = USVT .
I Optionally, back transform Q to get Q← QU.
I Final SVD is: A = QSVT

I A serial bottleneck exists where the SVD of R is computed, but this matrix is so small (only
46× 46 for our NDVI data set) that this serial portion is essentially negligible.
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Detecting anomalous observations with PCA

I Can identify anomalies two complementary ways:

I Look at sum of scores onto r lowest-order components:

p∑
i=p−r+1

y 2
i

λi
greater than some outlier

threshold
I Look at squared prediction error: How well an observation can be represented in subspace of q

highest order components?
I Idea: decompose into modeled and residual parts: x = x̂ + x̃
I P =

[
v1 v2 . . . vq

]
I x̂ = PPT x = Cx and x̃ = (I − PPT )x = C̃x

I Abnormal if SPE = ‖x̃‖2 =
∥∥∥C̃x

∥∥∥2
exceeds threshold

I Can also do cross-comparison: Construct subspace from one data set, then see how well
observations from another can be represented in that space.
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Detecting anomalies within single year, single domain

I These approaches will flag any observations that are somehow “unusual” for the collection of data
from which the principal components have been calculated.

I Some judgement required: choice of NDVI data subset used in the PCA calculation will affect
what constitutes a “normal” or “abnormal” observation.

I E.g., Extremely low NDVI may appear normal when using PCA based on national dataset due to
presence of areas like the Mohave; appears anomalous when using PCA based only on humid
Southeast.

I Here we use PCAs computed over single years and within a spatial domain conforming to the
eco-climatic domains established by the National Ecological Observatory Network.

46 / 68



NEON Domains
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Detecting anomalies within single year, single domain

I These approaches will flag any observations that are somehow “unusual” for the collection of data
from which the principal components have been calculated.

I Some judgement required: choice of NDVI data subset used in the PCA calculation will affect
what constitutes a “normal” or “abnormal” observation.

I E.g., Extremely low NDVI may appear normal when using PCA based on national dataset due to
presence of areas like the Mohave; appears anomalous when using PCA based only on humid
Southeast.

I Here we use PCAs computed over single years and within a spatial domain conforming to the
eco-climatic domains established by the National Ecological Observatory Network.

I In all examples, PC vectors 10–46 are used as the basis for the “abnormal” space, which explains
5–10% of the variance.

I In all of examples, certain features that are not disturbances but possess very anomalous NDVI
traces (e.g., bodies of water) show up very strongly.
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Colorado and Southern Wyoming, 2008

Figure: Portion of the Southern Rockies–Colorado Plateau NEON Domain for year 2008, showing map cells scoring in the 85th
percentile. Black polygons show damaged areas noted in aerial detection surveys; extensive damage due to mountain pine beetle
and sudden aspen decline are evident.
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Vicinity of Louisiana Coast: Hurricane-induced disturbance

Figure: Portions of the PCA-based anomaly maps (map cells scoring in the 90th percentile are shown) for the Southeast NEON
Domain for years 2004–2009, showing the area in the vicinity of the Louisiana coast. From left to right, the top row shows years
2004, 2005, and 2006, respectively, and the bottom row years 2007, 2008, and 2009. The affected regions are circled in the
2005 and 2008 maps. The prominent red features are water bodies.
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Figure: NDVI trajectory as viewed via the Forest Change Assessment Viewer for a location (close to the center of the circled
region in the previous figure) near the coast in southwestern Louisiana showing apparent hurricane-induced mortality from
events in 2005 and 2008.
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Southern Appalachians: Hemlock decline

Figure: At left, a portion of the PCA-based anomaly map (map cells scoring in the 90th percentile are shown) for the Southern
Appalachians/Cumberland Plateau NEON Domain for year 2010. The arrow indicates a location thought to be affected by
hemlock woolly adelgid, and the corresponding NDVI trajectory is shown at right.
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Future Directions: Possible Science Goals

We have a few scalable tools suitable for analyzing large (multi-TB) geo-spatio-temporal data sets.
What other interesting things could we do with them?

I Potential questions of interest:
I How are global plant distributions affect by climate change?
I What are the implications for global carbon budgets and feedbacks to climate?
I What changes do we expect to key events like onset of growing season?
I What changes do we expect to suitable growing ranges for crops?
I Are there policy implications for agriculture and ensuring the food supply?

I Could combine analysis to all of the MODIS vegetative phenology record with global fine-scale
meteorological reanalysis and possibly other ancillary data layers.
I Enables attribution of vegetation changes to climate or other events.
I Study directly observed vegetation responses to extreme events.

I Could analyze high-resolution and/or multi-model ensemble Earth system model simulations:
I Project changes to distribution of eco-phenoregions (identified by the historical analysis) for different

climate change scenarios.
I Combine with crop physiology models to project changes in yields.
I Combine with urban growth models or population models to assess resource planning, policy

scenarios, and crop futures.

I Another item of interest: model-data and model-model comparison
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Cluster analysis employed to compare ARM observational data at the Southern Great Plains (SGP) site
with corresponding 6-hourly output from an integration of the Community Climate System Model
(CCSM) run under the IPCC SRES A2 scenario for the current decade.

I State 5 (very high humidity and temperature
at the surface) has no analog in the
observational data.

I States 1, 3, and 7 have very low frequency in
the observations (see frequency plot), so
their absence from model predictions does
not suggest a problem.

I State 11 (high humidity and temperature
with very low wind shear), is never predicted
by CCSM.

I CCSM predicts over-abundance of state 9
(low humidity and high temperature
conditions) while under-representing state 4
(moderate humidity, temperature, and shear
conditions).

I Misrepresentation of atmospheric states in
CCSM over the SGP site could have impacts
on predictions of cloud formation and hence
the local radiation budget.
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Bonus: Machine-learning based scale bridging in hyperresolution simulations

A daunting grand challenge problem for an exascale-class machine—hyperresolution land surface
modeling—and a possible (possibly not possible) approach (or two).
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Motivation for hyperresolution land surface models

I Land surface models (LSMs) usually run at spatial resolutions at which it is computationally
feasible to run a coupled climate model (about O(10) km for a current very high-resolution global
model).

I There are compelling arguments for running LSMs (with more realistic hydrologic process models)
at dramatically higher resolutions.

I “Hyperresolution” models would enable representation of several important processes related to C
and N cycling, e.g.,
I Accurate prediction of denitrification rates; requires fine resolution of topographic heterogeneities and

regions of high soil moisture where redox conditions are favorable to denitrification.
I CO2 outgassing from river channel systems too fine to represent in current resolution models; these

fluxes can be very significant.
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Amazon Basin fine-scale river channel systems
An estimated 0.5 Gt/year of carbon is outgassed in the Amazon Basin, much of it from small streams.

Figure: The central Amazon basin; wetlands (white pixels) occupy 17% of the total area. Figure from Hess et al. 2003, Remote
Sensing of Environment, v. 87.
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Recent advances in LSM hydrology and reactive transport

I Sophisticated surface–subsurface hydrology and reactive transport models—needed for accurate
representation of surface/subsurface water dynamics and biogeochemical processes at high
resolutions—have recently been coupled to LSMs.

I Some of these models (e.g., PFLOTRAN, ParFlow) can fully utilize leadership-class
supercomputers, enabling dramatically higher-resolution simulations of global hydrology and
biogeochemistry in LSMs as supercomputer power grows.

I But even with all foreseeable advances in computing power and solver algorithms, global LSM
simulations will not resolve some important processes that are difficult to represent via sub-grid
parameterizations.
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Scaling challenge: Permafrost-affected Arctic regions
Linear scaling assumptions are a poor fit for the complex organization of fine- and intermediate-scale
features in the Arctic.

Figure courtesy of Peter Thornton, ORNL.
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NGEE–Arctic upscaling/downscaling approach

I Construct mechanistic, process-resolving models accurate at small scale.

I Conduct series of simulations over sequence of nested computational domains ranging from fine to
global climate-grid resolutions.

I Ensemble of simulations at finer scale analyzed to produce parameter values for a coarser scale;

I Coarser scale simulations analyzed to generate parameters for yet coarser simulations, or for
improved boundary conditions for repeating finer-scale runs.

I This is an off-line approach.
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Representativeness-based sampling network design

I The scaling approach cannot rely solely on simulations; it must be constrained by observations.

I Geospatiotemporal clustering (GSTC) can be used to stratify sampling domains, inform site
selection, and provide a basis for up-scaling and extrapolating measurements to land areas within
and beyond the sampling domains.

1000 km 1000 km

Figure: Representativeness (closeness in terms of Euclidean distance in the data-space of eco-climatic variables used in the
cluster analysis) for present-day conditions for two potential NGEE–Arctic sites considered in [?] (Barrow on the left, Council on
the right).
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Superparameterization in atmospheric models

From http://www.ucar.edu/communications/quarterly/summer06/cloudcenter.jsp.

I Embed small-scale 2D or quasi-3D model inside each“global scale” cell.

I Embedded models employ periodic lateral boundary conditions, don’t interact with each other
(except indirectly through fluxes on the global-scale grid).

I Couple by enforcing the property that the horizontal average of a small-scale variable is exactly
equal to the value of the corresponding large-scale value.
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Superparameterization-inspired online upscaling in hydrologic models

I Many hydrologic processes work in an intrinsically 3D space, but embedding 3D small-scale grids
in every global grid cell is computationally infeasible.

I Could the same GSTC-based techniques used for choosing ecological sampling sites be used to
choose a sparse set of “measurement” sites where fine-scale, 3D models are to be embedded?
I Periodically run an on-line clustering using the parameters and state variables from all cells in the

global grid.
I Group cells with similar states, properties, and forcings together into clusters.
I In representative subset of cells from each cluster, run an embedded fine-scale model.
I Map quantities of interest, e.g., biogeochemical reaction rates, from the sparse collection of fine-scale

models back to other global cells that are members of the same (or similar) clusters.
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Cluster-based upscaling from sparse fine-scale models to global

I Simplest approach is “paint by numbers”: if only one member of a cluster has an embedded
model, assign the same upscaled value from that member to all others of the cluster; if there are
multiple members of the cluster that run embedded fine-scale models, assign other members the
value from the closest (in data space) member or some average.

I Alternatively, construct model response surfaces from the ensemble of fine-scale simulations within
a cluster.
I Such an approach was used by Luxmoore et al. in [?] and [?] to scale the results of small-scale plant

physiological responses to various environmental factors up through a hierarchy of models to the
regional ecosystem scale.
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Cluster-based spatial sparsification for global CLM simulations
I Global CLM simulations at 0.5◦ × 0.5◦ have ∼60,000 grid cells that must be modeled in hundreds of

100–1000 y simulations, which is currently computationally untenable.

I Cluster analysis uses the CRU-NCEP climate data, plant functional type (PFT) characteristics, and
steady-state modeled quantities.

GPP for 750 Cells Compared with 60,000 Cells
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Open questions

I believe that the geospatiotemporal clustering-guided approach outlined presents a viable way to
adaptively and parsimoniously select locations in which embedded ultra high-resolution model patches
should be run, but there are many open questions:

I What level of division (i.e., the number of clusters) should be employed?

I How many different levels of scale must be used?

I What is the best (or at least adequate) approach for upscaling?

I What is a good approach to prescribing boundary conditions for the embedded fine-scale models?

I hope to explore these and other questions with the climate science and computational mathematics
communities.
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Data assimilation/Bayesian approaches?

Alternative idea: Treat results derived from fine-scale models as “measurements” in a data assimilation
(DA) framework.

I DA systems estimate true state by blending data from mathematical models with available
observations, according to estimates of the expected errors.

I In atmospheric prediction, major source of errors is initial conditions, and DA system adjusts the
model by determining corrections to initial state.

I We need to perturb evolution of the global model state; done naively, will violate conservation and
positivity.

I However, Jacobs and Ngodock [?] have constructed schemes honoring physical conservation laws
within 4DVAR by applying corrections to flux terms instead of conserved quantities themselves.

I Is such an approach feasible here?

67 / 68



References cited

F. M. Hoffman, J. Kumar, R. T. Mills, and W. W. Hargrove, “Representativeness-based sampling network design for the

State of Alaska,” Landscape Ecology, vol. 28, no. 8, pp. 1567–1586, Oct. 2013.

R. J. Luxmoore, W. W. Hargrove, M. L. Tharp, W. M. Post, M. W. Berry, K. S. Minser, W. P. Cropper Jr, D. W. Johnson,

B. Zeide, R. L. Amateis et al., “Signal-transfer modeling for regional assessment of forest responses to environmental
changes in the southeastern united states,” Environmental Modeling & Assessment, vol. 5, no. 2, pp. 125–137, 2000.

R. J. Luxmoore, W. W. Hargrove, M. Lynn Tharp, W. Mac Post, M. W. Berry, K. S. Minser, W. P. Cropper, D. W.

Johnson, B. Zeide, R. L. Amateis et al., “Addressing multi-use issues in sustainable forest management with
signal-transfer modeling,” Forest Ecology and Management, vol. 165, no. 1, pp. 295–304, 2002.

G. Jacobs and H. Ngodock, “The maintenance of conservative physical laws within data assimilation systems,” Monthly

weather review, vol. 131, no. 11, pp. 2595–2607, 2003.

68 / 68


